...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Spectroscopic determination of leaf water content using continuous wavelet analysis
【24h】

Spectroscopic determination of leaf water content using continuous wavelet analysis

机译:连续小波分析光谱法测定叶片含水量

获取原文
获取原文并翻译 | 示例

摘要

The gravimetric water content (GWC, %), a commonly used measure of leaf water content, describes the ratio of water to dry matter for each individual leaf. To date, the relationship between spectral reflectance and GWC in leaves is poorly understood due to the confounding effects of unpredictably varying water and dry matter ratios on spectral response. Few studies have attempted to estimate GWC from leaf reflectance spectra, particularly for a variety of species. This paper investigates the spectroscopic estimation of leaf GWC using continuous wavelet analysis applied to the reflectance spectra (350-2500nm) of 265 leaf samples from 47 species observed in tropical forests of Panama. A continuous wavelet transform was performed on each of the reflectance spectra to generate a wavelet power scalogram compiled as a function of wavelength and scale. Linear relationships were built between wavelet power and GWC expressed as a function of dry mass (LWC_D) and fresh mass (LWC_F) in order to identify wavelet features (coefficients) that are most sensitive to changes in GWC. The derived wavelet features were then compared to three established spectral indices used to estimate GWC across a wide range of species. Eight wavelet features observed between 1300 and 2500nm provided strong correlations with LWC_D, though correlations between spectral indices and leaf GWC were poor. In particular, two features captured amplitude variations in the broad shape of the reflectance spectra and three features captured variations in the shape and depth of dry matter (e.g., protein, lignin, cellulose) absorptions centered near 1730 and 2100nm. The eight wavelet features used to predict LWC_D and LWC_F were not significantly different; however, predictive models used to determine LWC_D and LWCF differed. The most accurate estimates of LWC_D and LWC_F obtained from a single wavelet feature showed root mean square errors (RMSEs) of 28.34% (R~2=0.62) and 4.86% (R2=0.69), respectively. Models using a combination of features resulted in a noticeable improvement predicting LWC_D and LWCF with RMSEs of 26.04% (R2=0.71) and 4.34% (R2=0.75), respectively. These results provide new insights into the role of dry matter absorption features in the shortwave infrared (SWIR) spectral region for the accurate spectral estimation of LWC_D and LWC_F. This emerging spectral analytical approach can be applied to other complex datasets including a broad range of species, and may be adapted to estimate basic leaf biochemical elements such as nitrogen, chlorophyll, cellulose, and lignin.
机译:重量水分含量(GWC,%)是一种常用的叶片水分含量指标,它描述了每片叶片的水与干物质的比例。迄今为止,由于不可预知的水和干物质比率变化对光谱响应的混杂影响,人们对叶片的光谱反射率和GWC之间的关系了解甚少。很少有研究试图从叶片反射光谱中估算GWC,特别是对于各种物种。本文应用连续小波分析技术对巴拿马热带森林中47种物种的265种叶片样品的反射光谱(350-2500nm)进行了光谱估计,研究了叶片GWC的光谱特征。对每个反射光谱执行连续小波变换,以生成作为波长和比例函数的小波功率标度图。在小波功率和GWC之间建立了线性关系,表示为干质量(LWC_D)和新鲜质量(LWC_F)的函数,以便识别对GWC变化最敏感的小波特征(系数)。然后将导出的小波特征与三个已建立的光谱指数进行比较,这三个光谱指数用于估计各种物种的GWC。尽管光谱指数与叶片GWC之间的相关性较弱,但在1300 nm至2500nm之间观察到的八个小波特征与LWC_D具有很强的相关性。特别地,两个特征捕获了反射光谱的宽形状中的幅度变化,并且三个特征捕获了中心在1730和2100nm附近的干物质(例如蛋白质,木质素,纤维素)吸收的形状和深度的变化。用来预测LWC_D和LWC_F的八个小波特征没有显着差异。但是,用于确定LWC_D和LWCF的预测模型有所不同。从单个小波特征获得的LWC_D和LWC_F的最准确估计分别显示均方根误差(RMSE)为28.34%(R〜2 = 0.62)和4.86%(R2 = 0.69)。使用功能组合的模型可以显着改善预测LWC_D和LWCF的RMSE,分别为26.04%(R2 = 0.71)和4.34%(R2 = 0.75)。这些结果提供了对干物质吸收特征在短波红外(SWIR)光谱区域中对LWC_D和LWC_F的准确光谱估计的作用的新见解。这种新兴的光谱分析方法可以应用于包括各种各样物种的其他复杂数据集,并且可以适用于估计基本的叶片生化元素,例如氮,叶绿素,纤维素和木质素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号