首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems
【24h】

Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems

机译:连续小波分析用于光谱法确定北部泥炭地生态系统的地下水分和地下水位高度

获取原文
获取原文并翻译 | 示例

摘要

Climate change is altering the water-table (WT) height and near-surface moisture conditions in northern peatlands, which in turn both increases the susceptibility to fire and reduces the carbon sink capacity of these ecosystems. To further develop remote sensing-based measurements of peatland moisture characteristics, we employed coincident surface reflectance and moisture measurements in two Sphagnum moss-dominated peatland sites. We applied the Mexican hat continuous wavelet transform to the measured spectra to generate wavelet features and coefficients across a range of scales. Overall, wavelet analysis was an improvement over the previously tested spectral indices at both the study sites. Linear mixed effect models for WT height using wavelet features accounted for more of the variance with both an improved marginal R2 (29% greater) and a larger conditional R2 (21% greater) compared to the best performing spectral index. While spectral indices performed similarly with wavelet coefficients for moisture content measured at 3 cm depth, they performed poorly for volumetric moisture content measured at 7 cm depth. The current study also revealed the advantage of selecting the best subsets of wavelet features based upon genetic algorithm over a more widely used technique that selects features based on correlation scalograms. It also provided new insights into the significance of various spectral regions to detect WT alteration-induced vegetation change.
机译:气候变化正在改变北部泥炭地的地下水位高度和近地表湿度,这反过来又增加了火灾的敏感性并降低了这些生态系统的碳汇能力。为了进一步开发基于遥感的泥炭地水分特征测量,我们在两个以泥炭藓为主的泥炭地地点采用了同时的表面反射率和水分测量。我们将墨西哥帽连续小波变换应用于所测量的光谱,以生成一系列尺度范围内的小波特征和系数。总体而言,小波分析是对两个研究地点先前测试的光谱指数的改进。与小波谱特征相比,使用小波特征的WT高度的线性混合效应模型解释了更多的方差,其中边际R2(提高了29%)和条件R2更大(提高了21%)。尽管光谱指数的表现与小波系数在3 cm深度处测量的水分含量相似,但对于7 cm深度处的体积水分含量却表现不佳。当前的研究还揭示了基于遗传算法选择小波特征的最佳子集的优势,而不是基于相关比例图选择特征的更广泛使用的技术。它还提供了对各种光谱区域对检测WT变化引起的植被变化的重要性的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号