首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire
【24h】

The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire

机译:利用波形激光雷达测量新罕布什尔州北部温带针叶树和落叶林结构

获取原文
获取原文并翻译 | 示例

摘要

The direct retrieval of canopy height and the estimation of aboveground biomass are two important measures of forest structure that can be quantified by airborne laser scanning at landscape scales. These and other metrics are central to studies attempting to quantify global carbon cycles and to improve understanding of the spatial variation in forest structure evident within differing biomes. Data acquired using NASA's Laser Vegetation Imaging Sensor (LVIS) over the Bartlett Experimental Forest (BEF) in central New Hampshire (USA) was used to assess the performance of waveform lidar in a northern temperate mixed conifer and deciduous forest. Using coincident plots established for this study, we found strong agreement between field and lidar measurements of height (r(2)=0.80, 2 p < 0.000) at the footprint level. Allometric calculations of aboveground biomass (AGBM) and LVIS metrics (AGBM: r(2)=0.61, PRESS RMSE=58.0 Mg ha(-1), p < 0.000) and quadratic mean stem diameter (QMSD) and LVIS metrics (r(2) = 0.54, p = 0.002) also showed good agreement at the footprint level. Application of a generalized equation for determining AGBM proposed by Lefsky et a]. (2002a) to footprint-level field data from Bartlett resulted in a coefficient of determination of 0.55; RMSE = 64.4 Mg ha(-1); p 0.002. This is slightly weaker than the strongest relationship found with the best-fit single term regression model. Relationships between a permanent grid of USDA Forest Service inventory plots and the mean values of aggregated LVIS metrics, however, were not as strong. This discrepancy suggests that validation efforts must be cautious in using pre-existing field data networks as a sole means of calibrating and verifying such remote sensing data. Stratification based on land-use or species composition, however, did provide the means to improve regression relationships at this scale. Regression models established at the footprint level for AGBM and QMSD were applied to LVIS data to generate predicted values for the whole of Bartlett. The accuracy of these models was assessed using varying subsets of the USFS NERS plot data. Coefficient of determinations ranged from fair to strong with aspects of land-use history and species composition influencing both the fit and the level of error seen in the predicted relationships. (c) 2006 Elsevier Inc. All rights reserved.
机译:冠层高度的直接获取和地上生物量的估计是森林结构的两个重要措施,可以通过景观尺度上的机载激光扫描来量化。这些和其他指标对于尝试量化全球碳循环并增进对不同生物群落内明显的森林结构空间变化的理解的研究至关重要。在美国新罕布什尔州中部的巴特利特实验森林(BEF)上,使用NASA的激光植被成像传感器(LVIS)获取的数据用于评估北部温带针叶树和落叶林中的波形激光雷达的性能。使用为本研究建立的重合图,我们在覆盖区水平的实地和激光雷达高度测量值(r(2)= 0.80,2 p <0.000)之间发现了很强的一致性。地上生物量(AGBM)和LVIS指标(AGBM:r(2)= 0.61,PRESS RMSE = 58.0 Mg ha(-1),p <0.000)和二次平均茎直径(QMSD)和LVIS指标(r( 2)= 0.54,p = 0.002)在足迹水平上也显示出良好的一致性。 Lefsky等人提出的广义方程在确定AGBM中的应用。 (2002a)从巴特利特到足迹水平的实地数据得出的确定系数为0.55。 RMSE = 64.4 Mg ha(-1); p 0.002。这比通过最佳拟合单项回归模型发现的最强关系弱一些。但是,USDA森林服务局调查图的永久网格与LVIS汇总指标的平均值之间的关系并不那么强。这种差异表明,在使用现有的现场数据网络作为校准和验证此类遥感数据的唯一手段时,验证工作必须谨慎。但是,基于土地利用或物种组成的分层确实提供了改善此规模回归关系的方法。在AGBM和QMSD的足迹级别建立的回归模型应用于LVIS数据,以生成整个Bartlett的预测值。使用USFS NERS绘图数据的不同子集评估了这些模型的准确性。确定系数的范围从中等到强,土地使用历史和物种组成方面都影响预测关系中的拟合度和误差水平。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号