首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China
【24h】

Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China

机译:利用东北森林地区被动微波亮度温度数据估算雪深

获取原文
获取原文并翻译 | 示例

摘要

Snow depth is an important factor in water resources management in Northeast China. Forest covers 40% of Northeast China, and the presence of forests influences the accuracy of snow depth retrievals from passive microwave remote sensing data. An optimal iteration method was used to retrieve the forest transmissivities at 18 and 36 GHz based on the snow and forest microwave radiative transfer models and the snow properties measured in field experiments. The transmissivities at 18 and 36 GHz are 0.895 and 0.656 in the horizontal polarization, and 0.821 and 0.615 in the vertical polarization, respectively. Furthermore, the forest transmissivity and snow properties were input into the Microwave Emission Model of Layered Snowpacks (MEMLS) to establish a dynamic look-up table (LUT). Snow depths were retrieved from satellite passive microwave remote sensing data based on the LUT method, and these retrievals were verified by snow depth observations at 103 meteorological stations. The results showed that the bias between the retrieved and measured snow depths is very small, with root mean square errors (RMSEs) of approximately 6 cm in forest regions and 4 cm in non-forest regions. When compared with the existing snow products, the snow depth retrieved in this work presented the highest level of accuracy. The regional snow depth product in China is superior to the GlobSnow and NASA AMSR-E standard SWE products in non-forest regions, whereas the GlobSnow estimate is superior to the regional snow depth product in China and NASA AMSR-E standard SWE product estimates in forest regions. Therefore, we conclude that 1) the influence of forest on snow depth retrieval is important, and the appropriate forest parameters should be considered in the estimation of snow depth from passive microwave brightness temperature data; and 2) the snow depth retrieval algorithm based on the dynamic LUT method proved to be efficient in Northeast China. (C) 2016 Elsevier Inc. All rights reserved.
机译:积雪深度是影响东北地区水资源管理的重要因素。森林覆盖了中国东北地区的40%,森林的存在会影响从被动微波遥感数据中获取雪深的准确性。基于积雪和森林微波辐射传递模型以及野外实验中测得的积雪性质,采用最佳迭代方法检索了18 GHz和36 GHz的森林透射率。 18和36 GHz的透射率在水平极化方向上分别为0.895和0.656,在垂直极化方向上分别为0.821和0.615。此外,将森林的透射率和积雪性质输入到分层积雪的微波发射模型(MEMLS)中,以建立动态查找表(LUT)。基于LUT方法从卫星被动微波遥感数据中获取了雪深,并通过对103个气象站的雪深观测进行了验证。结果表明,雪深和实测雪深之间的偏差非常小,森林区域的均方根误差(RMSE)约为6 cm,非森林区域的均方根误差为4 cm。与现有的积雪产品相比,这项工作中获得的积雪深度具有最高的准确性。在非森林地区,中国的区域积雪深度产品优于GlobSnow和NASA AMSR-E标准SWE产品,而在中国,GlobSnow的估算结果优于中国的区域积雪深度和NASA AMSR-E标准的SWE产品估计。森林地区。因此,我们得出以下结论:1)森林对积雪深度检索的影响很重要,从被动微波亮度温度数据估算积雪深度时应考虑适当的森林参数; 2)基于动态LUT方法的积雪深度检索算法在东北地区被证明是有效的。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号