首页> 外文期刊>IEEE Transactions on Fuzzy Systems: A Publication of the IEEE Neural Networks Council >Joint Learning of Anchor Graph-Based Fuzzy Spectral Embedding and Fuzzy K-Means
【24h】

Joint Learning of Anchor Graph-Based Fuzzy Spectral Embedding and Fuzzy K-Means

机译:基于锚图的模糊谱嵌入与模糊K均值的联合学习

获取原文
获取原文并翻译 | 示例

摘要

As one of the classical clustering techniques, spectral embedding boasts extensive applicability across numerous domains. Traditional spectral embedding techniques entail the mapping of graph models to low-dimensional vector spaces (indicator vectors) to facilitate hard partitioning. However, data boundaries occasionally exhibit ambiguity, thereby constraining the utility of hard partitioning. In this article, we introduce an innovative spectral embedding method, namely, joint learning of anchor graph-based fuzzy spectral embedding model and fuzzy K-means (AFSEFK). Drawing inspiration from fuzzy logic, our method employs a membership vector in lieu of the conventional indicator vector for spectral embedding, amalgamating it with fuzzy K-means to concurrently optimize membership, thereby simultaneously learning the local and global structures inherent in the data. Moreover, to enhance the quality of similarity graphs and augment clustering performance, we implement the balanced K-means-based hierarchical K-means technique to generate representative anchors. Subsequently, an anchor-based similarity graph is devised through a parameter-free neighbor assignment strategy. Comprehensive extensive experimentation with synthetic and real-world datasets substantiates the efficacy of the AFSEFK algorithm.
机译:作为经典的聚类技术之一,频谱嵌入在众多领域具有广泛的适用性。传统的频谱嵌入技术需要将图模型映射到低维向量空间(指标向量),以促进硬分区。但是,数据边界偶尔会表现出歧义,从而限制了硬分区的实用性。本文介绍了一种创新的谱嵌入方法,即基于锚图的模糊谱嵌入模型和模糊K均值(AFSEFK)的联合学习。从模糊逻辑中汲取灵感,我们的方法采用隶属向量代替传统的指示向量进行谱嵌入,将其与模糊K均值合并以同时优化隶属度,从而同时学习数据中固有的局部和全局结构。此外,为了提高相似性图的质量和增强聚类性能,我们实现了基于平衡的K-means分层K-means技术来生成代表性锚点。随后,通过无参数邻域赋值策略设计了基于锚点的相似性图。对合成数据集和真实世界数据集的全面广泛实验证实了 AFSEFK 算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号