...
首页> 外文期刊>Rapid prototyping journal >Options for additive rapid prototyping methods (3D printing) in MEMS technology
【24h】

Options for additive rapid prototyping methods (3D printing) in MEMS technology

机译:MEMS技术中附加快速成型方法(3D打印)的选项

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - This study aims to investigate the options for additive rapid prototyping methods in microelectromechanical systems (MEMS) technology. Additive rapid prototyping technologies, such as stereolithography (SLA), fused deposition modeling (FDM) and selective laser sintering (SLS), all commonly known as three-dimensional (3D) printing methods, are reviewed and compared with the resolution requirements of the traditional MEMS fabrication methods. Design/methodology/approach - In the 3D print approach, the entire assembly, parts and prototypes are built using various plastic and metal materials directly from the software file input, completely bypassing any additional processing steps. The review highlights their potential place in the overall process flow to reduce the complexity of traditional microfabrication and long processing cycles needed to test multiple prototypes before the final design is set. Findings - Additive manufacturing (AM) is a promising manufacturing technique in micro-device technology. Practical implications - In the current state of 3D printing, microfluidic and lab-on-a-chip devices for fluid handling and manipulation appear to be the most compatible with the 3D print methods, given their fairly coarse minimum feature size of 50-500 μm. Future directions in the 3D materials and method development are identified, such as adhesion and material compatibility studies of the 3D print materials, wafer-level printing and conductive materials development. One of the most important goals should be the drive toward finer resolution and layer thickness (1-10 μm) to stimulate the use of the 3D printing in a wider array of MEMS devices. Originality/value - The review combines two discrete disciplines, microfabrication and AM, and shows how microfabrication and micro-device commercialization may benefit from employing methods developed by the AM community.
机译:目的-这项研究旨在研究微机电系统(MEMS)技术中添加快速成型方法的选项。回顾了通常被称为三维(3D)打印方法的诸如立体光刻(SLA),熔融沉积建模(FDM)和选择性激光烧结(SLS)之类的快速成型技术,并将其与传统的分辨率要求进行比较MEMS制造方法。设计/方法/方法-在3D打印方法中,直接从软件文件输入中使用各种塑料和金属材料来构建整个组件,零件和原型,从而完全绕开了任何其他处理步骤。审查强调了它们在整个工艺流程中的潜在地位,以降低传统微细加工的复杂性以及在设定最终设计之前测试多个原型所需的较长处理周期。研究结果-增材制造(AM)是微设备技术中一种很有前途的制造技术。实际意义-在3D打印的当前状态下,用于流体处理和操纵的微流体和芯片实验室设备似乎与3D打印方法最兼容,因为它们的最小特征尺寸相当粗糙,为50-500μm 。确定了3D材料和方法开发的未来方向,例如3D打印材料的粘合性和材料兼容性研究,晶圆级打印和导电材料的开发。最重要的目标之一应该是朝着更精细的分辨率和更厚的层厚度(1-10μm)的方向发展,以刺激在更广泛的MEMS设备阵列中使用3D打印。原创性/价值-该评论结合了微细加工和增材制造两个独立的学科,并展示了微细加工和微设备商业化如何从采用增材制造社区开发的方法中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号