首页> 外文期刊>Laser Focus World: The Magazine for the Photonics & Optoelectronics Industry >Optical-correction technique makes lambda/1000 optics a reality
【24h】

Optical-correction technique makes lambda/1000 optics a reality

机译:光学校正技术使lambda / 1000光学器件成为现实

获取原文
获取原文并翻译 | 示例
           

摘要

A novel deposition method moves the substrate behind a patterned mask during deposition to achieve high control of thickness and subnanometer accuracy of optical thin-film correction. With the growing interest in ultrahigh-precision optics for such diverse purposes as astronomical imaging, gravity-wave observatories, subnanometer optical metrology, extreme-UV lithography, and x-ray optics, demand is increasing for optical components that have unprecedented quality at all levels, from microroughness to overall shape or "figure." While either superlative surface-microroughness values or a highly controlled figure can be achieved independently with superpolishing or single-point surface finishing techniques respectively, it is difficult to achieve both simultaneously. At CSIRO's Division of Industrial Physics, we have recently developed a technique that is capable of correcting the figure of optical components to subnanometer levels without degrading the microroughness. The technique was initially developed to correct optical-thickness variations of large-aperture Fabry-Perot etalon filters used for solar observation, but is applicable to any transmissive or reflective optical component. For transmissive optics, it is important to deposit material that is index-matched to the substrate; for example, we use tantalum pentoxide to correct lithium niobate and silicon dioxide for silica-based optics. For reflective optics, it is not necessary to index-match the corrective layer and any mechanically suitable material can be used.
机译:一种新颖的沉积方法在沉积过程中将基板移动到图案化掩模后面,以实现对光学薄膜校正的厚度和亚纳米精度的高度控制。随着人们对诸如天文成像,重力波观测,亚纳米光学计量,极紫外光刻和X射线光学等多种用途的超高精度光学器件的兴趣日益浓厚,对各个级别具有空前质量的光学组件的需求不断增长,从微观粗糙度到整体形状或“图形”。虽然可以分别通过超抛光或单点表面精加工技术分别获得最高级的表面微观粗糙度值或高度可控的图形,但很难同时实现这两个目标。在CSIRO的工业物理部门,我们最近开发了一种技术,该技术能够将光学组件的形状校正到亚纳米水平,而不会降低微粗糙度。最初开发该技术是为了校正用于太阳观测的大口径Fabry-Perot标准具滤光片的光学厚度变化,但该技术适用于任何透射或反射光学组件。对于透射光学,重要的是要沉积与基材折射率匹配的材料。例如,我们使用五氧化二钽来校正二氧化硅基光学器件中的铌酸锂和二氧化硅。对于反射光学器件,无需对校正层进行折射率匹配,并且可以使用任何机械合适的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号