首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Microfluidic multicompartment device for neuroscience research
【24h】

Microfluidic multicompartment device for neuroscience research

机译:用于神经科学研究的微流控多室设备

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes and characterizes a novel microfabricated neuronal culture device. This device combines microfabrication, microfluidic, and surface micropatterning techniques to create a multicompartment neuronal culturing device that can be used in a number of neuroscience research applications. The device is fabricated in poly(dimethylsiloxane), PDMS, using soft lithography techniques. The PDMS device is placed on a tissue culture dish (polystyrene) or glass substrate, forming two compartments with volumes of less than 2 muL each. These two compartments are separated by a physical barrier in which a number of micron-size grooves are embedded to allow growth of neurites across the compartments while maintaining fluidic isolation. Cells are plated into the somal (cell body) compartment, and after 3-4 days, neurites extend into the neuritic compartment via the grooves. Viability of the neurons in the devices is between 50 and 70% after 7 days in culture; this is slightly lower than but comparable to values for a control grown on tissue culture dishes. Healthy neuron morphology is evident in both the devices and controls. We demonstrate the ability to use hydrostatic pressure to isolate insults to one compartment and, thus, expose localized areas of neurons to insults applied in soluble form. Due to the high resistance of the microgrooves for fluid transport, insults are contained in the neuritic compartment without appreciable leakage into the somal compartment for over 15 h. Finally, we demonstrate the use of polylysine patterning in combination with the microfabricated device to facilitate identification and visualization of neurons. The ability to direct sites of neuronal attachment and orientation of neurite outgrowth by micropatterning techniques, combined with fluidically isolated compartments within the culture area, offers significant advantages over standard open culture methods and other conventional methods for manipulating distinct neuronal microenvironments. [References: 10]
机译:本文描述和表征了一种新型的微制造的神经元培养设备。该设备结合了微细加工,微流控和表面微图案化技术,以创建可用于多种神经科学研究应用的多室神经元培养设备。该设备使用软光刻技术在聚二甲基硅氧烷PDMS中制造。将PDMS设备放置在组织培养皿(聚苯乙烯)或玻璃基板上,形成两个隔室,每个隔室的体积小于2μL。这两个隔室由一个物理屏障隔开,在该物理屏障中嵌入了许多微米大小的凹槽,以允许神经突横穿各隔室生长,同时保持流体隔离。将细胞铺在体(细胞体)区室中,并在3-4天后,神经突通过凹槽延伸到神经区室中。培养7天后,装置中神经元的生存力在50%至70%之间;这略低于但与组织培养皿上生长的对照值相当。健康的神经元形态在设备和对照中都很明显。我们证明了使用静水压力将侮辱隔离到一个隔间的能力,从而使神经元的局部区域暴露于以可溶形式施加的侮辱。由于微槽对流体传输的高抵抗力,在神经隔室中包含了侮辱,在15小时内没有明显渗入体腔。最后,我们演示了结合使用聚赖氨酸模式与微细加工设备来促进神经元的识别和可视化。通过微模式技术与培养区域内流体隔离的隔室相结合,能够指导神经元附着和神经突生长的方向,与标准的开放式培养方法和其他处理不同神经元微环境的常规方法相比,具有明显的优势。 [参考:10]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号