首页> 外文期刊>Journal of Advances in Information Technology >Neural Network-Based Crowd Counting Systems: State of the Art, Challenges, and Perspectives
【24h】

Neural Network-Based Crowd Counting Systems: State of the Art, Challenges, and Perspectives

机译:基于神经网络的人群计数系统:最新技术、挑战和前景

获取原文
获取原文并翻译 | 示例

摘要

Crowd counting system has gained significant attention in recent years due to its relevance in various domains such as urban planning, public safety, resource allocation and decision-making in crowded environments. Due to differences in crowd densities, occlusions, size changes, and perspective distortions that are frequently seen in real-world scenarios, the system, nevertheless, falls short in terms of its purpose. To address this, it is necessary to create advanced neural network architectures, efficient methods for gathering and annotating data, reliable training procedures, and assessment criteria that accurately reflect the effectiveness of crowd counting systems. Therefore, the purpose of this study is to provide a comprehensive review of the state of the art in neural network-based crowd counting systems. The developments in neural network based crowd counting procedures, along with their features and limitations, most widely datasets and evaluation criteria are explored. The experimental findings of recent crowd counting systems are also examined. Hence, this work serves as an inspiration for additional research and development in this area, ultimately advancing crowd analysis and management systems.
机译:近年来,人流统计系统因其在城市规划、公共安全、资源分配和拥挤环境中的决策等各个领域的相关性而受到广泛关注。由于在真实场景中经常出现的人群密度、遮挡、大小变化和透视失真的差异,该系统在目的方面仍然不足。为了解决这个问题,有必要创建先进的神经网络架构、收集和注释数据的有效方法、可靠的训练程序以及准确反映人群计数系统有效性的评估标准。因此,本研究的目的是全面回顾基于神经网络的人群计数系统的最新技术。探讨了基于神经网络的人群计数程序的发展,以及它们的特点和局限性,最广泛的数据集和评估标准。此外,还研究了最近人群计数系统的实验结果。因此,这项工作为该领域的其他研究和开发提供了灵感,最终推动了人群分析和管理系统的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号