首页> 外文期刊>Lab on a chip >Taylor dispersion and the position-to-time conversion in microfluidic mixing devices
【24h】

Taylor dispersion and the position-to-time conversion in microfluidic mixing devices

机译:泰勒分散和微流体混合装置中的位置-时间转换

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Microfluidic mixing devices are increasingly popular tools for probing the non-equilibrium dynamics of bio-molecular systems. Commonly, hydrodynamic focusing is used to reduce the length scales that limit the time of diffusive mixing in the laminar flow regime, such that even sub-millisecond dead times for triggering a reaction have been achieved. Detection of a suitable signal at different points along the channel downstream of the mixing region, corresponding to different times after mixing, then allows the kinetics of the reaction to be obtained. However, the requisite accurate conversion of the positions in the channel to times after mixing is complicated by Taylor dispersion, the combined effect of diffusion and shear flow on the dispersion of the molecules in the microfluidic device. As a result, an accurate position-to-time conversion has only been possible in the limiting regimes, i.e. for very early times, where sample diffusion can be neglected, and for very long times, where the molecules have uniformly sampled the entire channel cross-section. Here, we use detailed three-dimensional, time-dependent finite-element calculations to obtain an accurate position-to-time conversion that bridges these two limits and allows us to quantify the effects of Taylor dispersion on the time resolution of a representative mixing device optimized for single-molecule fluorescence detection. The accuracy of the calculations is confirmed by direct comparison of the calculated velocity field with dual-focus fluorescence correlation spectroscopy measurements.
机译:微流体混合装置是越来越受欢迎的用于探测生物分子系统的非平衡动力学的工具。通常,使用流体动力聚焦来减小限制层流流动状态下扩散混合时间的长度尺度,从而甚至达到了亚毫秒级的死区时间来触发反应。在沿着混合区域下游的通道的不同点处检测到合适的信号,对应于混合后的不同时间,然后可以获取反应的动力学。然而,泰勒分散,扩散和剪切流对微流体装置中分子的分散的综合作用使混合后通道中位置精确地转换为时间变得复杂。结果,只有在有限的条件下才可能进行精确的位置-时间转换,即在很短的时间内可以忽略样品扩散,而在很长的时间里分子已经均匀采样了整个通道-部分。在这里,我们使用详细的三维时间相关的有限元计算来获得准确的位置到时间的转换,以转换这两个限制,并允许我们量化泰勒色散对代表性混合设备的时间分辨率的影响优化用于单分子荧光检测。通过将计算的速度场与双焦点荧光相关光谱法测量结果进行直接比较,可以确认计算的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号