...
首页> 外文期刊>Lab on a chip >Collaborative effects of electric field and fluid shear stress on fibroblast migration
【24h】

Collaborative effects of electric field and fluid shear stress on fibroblast migration

机译:电场和流体剪切应力对成纤维细胞迁移的协同作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cells are inherently exposed to a number of different biophysical stimuli such as electric fields, shear stress, and tensile or compressive stress from the extracellular environment in vivo. Each of these biophysical cues can work simultaneously or independently to regulate cellular functions and tissue integrity in both physiological and pathological conditions. Thus, it is vital to understand the interaction of multiple stimuli on cells by decoupling and coupling the stimuli in simple combinations and by investigating cellular behaviors in response to these cues. Here, we report a novel microfluidic platform to apply the combinatorial stimulation of an electric field and fluid shear stress by controlling two directional cues independently. An integrated microfluidic platform was developed using soft lithography to monitor the cellular migration in real-time in response to an electric field and fluid shear stress in single, simultaneous, and sequential modes. When each of these stimulations is applied separately, normal human dermal fibroblasts migrate toward the anode and in the direction of fluid flow in a dose-dependent manner. Simultaneous stimulation with an electric field and shear stress, which mimics a wound in vivo, enhances the directional migration of fibroblasts by increasing both directedness and trajectory speed, suggesting the plausible scenario of cooperation between two physical cues to promote wound healing. When an electric field and shear stress are applied sequentially, migration behavior is affected by the applied stimulation as well as pre-existing stimulating conditions. This microfluidic platform can be utilized to understand other microenvironments such as embryogenesis, angiogenesis and tumor metastasis.
机译:细胞固有地暴露于许多不同的生物物理刺激,例如体内细胞外环境产生的电场,剪切应力和拉伸或压缩应力。这些生物物理提示中的每一个都可以同时或独立地起作用,以在生理和病理条件下调节细胞功能和组织完整性。因此,至关重要的是要通过简单的组合去耦和耦合刺激以及研究对这些提示作出反应的细胞行为来了解细胞上多种刺激的相互作用。在这里,我们报告了一个新颖的微流控平台,通过独立控制两个方向线索来应用电场和流体剪切应力的组合刺激。使用软光刻技术开发了一个集成的微流体平台,以在单个,同时和顺序模式下响应电场和流体剪切应力实时监测细胞迁移。当分别施加这些刺激中的每一个时,正常的人类皮肤成纤维细胞以剂量依赖的方式朝着阳极并且在流体流动的方向上迁移。电场和剪切应力的同时刺激,模仿了体内的伤口,通过增加方向性和弹道速度来增强成纤维细胞的定向迁移,这暗示了两个物理线索之间合作促进伤口愈合的可能情况。当顺序施加电场和切应力时,迁移行为会受到所施加的刺激以及预先存在的刺激条件的影响。该微流体平台可用于了解其他微环境,例如胚胎发生,血管生成和肿瘤转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号