首页> 外文期刊>Lab on a chip >Passive control of cell locomotion using micropatterns: the effect of micropattern geometry on the migratory behavior of adherent cells
【24h】

Passive control of cell locomotion using micropatterns: the effect of micropattern geometry on the migratory behavior of adherent cells

机译:使用微模式被动控制细胞运动:微模式几何形状对贴壁细胞迁移行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Directed cell migration is critical to a variety of biological and physiological processes. Although simple topographical patterns such as parallel grooves and three-dimensional post arrays have been studied to guide cell migration, the effect of the dimensions and shape of micropatterns, which respectively represent the amount and gradient of physical spatial cues, on cell migration has not yet been fully explored. This motivates a quantitative characterization of cell migration in response to micropatterns having different widths and divergence angles. The changes in the migratory (and even locational) behavior of adherent cells, when the cells are exposed to physical spatial cues imposed by the micropatterns, are explored here using a microfabricated biological platform, nicknamed the "Rome platform". The Rome platform, made of a biocompatible, ultraviolet (UV) curable polymer (ORMOCOMP), consists of 3 μm thick micropatterns with different widths of 3 to 75 μm and different divergence angles of 0.5 to 5.0°. The migration paths through which NIH 3T3 fibroblasts move on the micropatterns are analyzed with a persistent random walk model, thus quantifying the effect of the divergence angle of micropatterns on cell migratory characteristics such as cell migration speed, directional persistence time, and random motility coefficient. The effect of the width of micropatterns on cell migratory characteristics is also extensively investigated. Cell migration direction is manipulated by creating the gradient of physical spatial cues (that is, divergence angle of micropatterns), while cell migration speed is controlled by modulating the amount of them (namely, width of micropatterns). In short, the amount and gradient of physical spatial cues imposed by changing the width and divergence angle of micropatterns make it possible to control the rate and direction of cell migration in a passive way. These results offer a potential for reducing the healing time of open wounds with a smart wound dressing engraved with micropatterns (or microscaffolds).
机译:定向细胞迁移对多种生物学和生理过程至关重要。尽管已经研究了诸如平行凹槽和三维柱阵列之类的简单地形图样来指导细胞迁​​移,但是分别代表物理空间线索的数量和梯度的微图案的尺寸和形状对细胞迁移的影响尚未出现经过充分探索。响应于具有不同宽度和发散角的微图案,这激发了细胞迁移的定量表征。当细胞暴露于微图案所施加的物理空间提示时,粘附细胞的迁移(甚至位置)行为的变化将在此处使用昵称“罗马平台”的微型生物平台进行研究。罗马平台由生物相容性的紫外线(UV)固化聚合物(ORMOCOMP)制成,由3微米厚的微图案组成,这些微图案的宽度为3到75微米,发散角为0.5到5.0度。使用持久性随机游走模型分析了NIH 3T3成纤维细胞在微模式上移动的迁移路径,从而量化了微模式发散角对细胞迁移特性(如细胞迁移速度,方向持续时间和随机运动系数)的影响。还广泛研究了微图案宽度对细胞迁移特性的影响。细胞迁移方向是通过创建物理空间线索的梯度(即微图案的发散角)来控制的,而细胞迁移速度则是通过调节它们的数量(即微图案的宽度)来控制的。简而言之,通过改变微图案的宽度和发散角而施加的物理空间提示的数量和梯度使得有可能以被动方式控制细胞迁移的速率和方向。这些结果为刻有微图案(或微支架)的智能伤口敷料提供了减少开放伤口愈合时间的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号