首页> 外文学位 >Cell Mechanics and Motility: Controlling Intracellular Transport with Micropatterns.
【24h】

Cell Mechanics and Motility: Controlling Intracellular Transport with Micropatterns.

机译:细胞力学和动力:用微模式控制细胞内运输。

获取原文
获取原文并翻译 | 示例

摘要

A thorough understanding of molecular interactions and transport governing cell mechanics and motility is necessary for the ultimate goal of improving human health, such as the development of cancer diagnostics and cancer treatment. However, despite decades of research and advances in biological experimental techniques, the intricate molecular mechanisms are still incompletely understood, making prediction and control of cells almost impossible.;One non-invasive way to study the internal organization of a cell is by constraining the cell on surface micropatterns of desired geometries. Micropatterns with effectively designed geometries can be used to understand and control cell mechanics and motility in three different ways: (1) Confining cells on micropatterns with fixed geometries prevent cells from assuming irregular shapes, making quantification and averaging across cells possible. Continuous 2D imaging of the cells through time shows that cells eventually depolarize on both symmetric and asymmetric micropatterns. Using confocal microscopy, 3D reconstruction of cell shapes on circular micropatterns revealed that the main components regulating cell shape and mechanics are cortical actin, cell membrane and nucleus. (2) Micropatterns with "designed" geometries also enable spatial separation of cellular components (e.g. focal adhesion and cytoskeleton, such as actin bundles and microtubules). For instance, cells on triangular micropatterns enable focal adhesion to be concentrated on the vertices while actin bundles form on the edges. Interestingly, live-cell imaging shows a cell-wide targeting of microtubules toward focal adhesion, guided by actin bundles. Furthermore, if the triangular micropatterns are connected in a linear chain, the asymmetric geometry could bias motion of cells in one direction, creating a ratcheting effect. (3) Confining cells on micropatterns (e.g. on linear tracks) allow a "reduction in dimensionality" for the migrating cells. Analysis of cellular trajectories along linear tracks shows that cancerous, non-metastatic cells move diffusively, while cancerous, metastatic cells move super-diffusively. Power-law distribution of the trajectories indicates that the metastatic cells are undergoing Levy walk, an optimum strategy for searching remote targets.
机译:对于改善人类健康的最终目标(例如癌症诊断和癌症治疗的发展),必须全面了解分子相互作用以及控制细胞力学和运动的转运。然而,尽管数十年来在生物实验技术方面进行了研究和进步,但仍未完全理解复杂的分子机制,从而几乎不可能进行细胞的预测和控制。研究细胞内部组织的一种非侵入性方法是通过限制细胞在所需几何形状的表面微图案上。具有有效设计的几何形状的微模式可以三种不同的方式用于理解和控制细胞力学和运动性:(1)将细胞限制在具有固定几何形状的微模式上,可以防止细胞呈现不规则形状,从而可以量化和平均化整个细胞。通过时间对细胞进行连续的2D成像显示,细胞最终在对称和不对称微图案上均去极化。使用共聚焦显微镜,在圆形微图案上对细胞形状进行3D重建显示,调节细胞形状和力学的主要成分是皮质肌动蛋白,细胞膜和细胞核。 (2)具有“设计的”几何形状的微图案还可实现细胞成分的空间分离(例如,粘着斑和细胞骨架,例如肌动蛋白束和微管)。例如,三角形微图案上的单元格可使粘着斑集中在顶点上,而肌动蛋白束则在边缘上形成。有趣的是,活细胞成像显示,在肌动蛋白束的引导下,微管向着粘着斑的全细胞靶向。此外,如果三角形微图案以线性链连接,那么不对称的几何形状可能会使细胞在一个方向上移动,从而产生棘轮效应。 (3)将细胞限制在微图案上(例如,在线性轨道上)允许迁移细胞的“尺寸减小”。对沿线性轨迹的细胞轨迹的分析表明,癌性非转移性细胞扩散扩散,而癌性转移性细胞超扩散性移动。轨迹的幂律分布表明,转移细胞正在经历Levy行走,这是搜索远程目标的最佳策略。

著录项

  • 作者

    Soh, Siowling.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Biology Cell.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 370 p.
  • 总页数 370
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号