首页> 外文期刊>Lab on a chip >Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices
【24h】

Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices

机译:混合纳米流体-微流体装置中金包被的纳米毛细管阵列膜中流体传输的电动控制。

获取原文
获取原文并翻译 | 示例
           

摘要

The introduction of metallic elements into microfluidic devices that support electrokinetic transport creates several fundamental issues relative to the high conductivity of the metal, which can act as a current shunt, causing profound effects on the transport process. Here we examine the use of Au-coated nanocapillary array membranes (Au NCAMs) as electrically addressable fluid control elements in multi-layer microfluidic architectures. Three alternative methods for fluid injection across Au NCAMs are presented: electrokinetic injection across NCAMs with Au coated on one side (asymmetric NCAM), electrokinetic injection across NCAMs with an embedded Au layer (symmetric NCAM), and field-free electroosmotic flow (EOF) pumping across either type of Au NCAM. Injection efficiency across asymmetric NCAMs depends on the orientation of the asymmetric membrane relative to the driving potential. Efficient injections are enabled when the Au coating is on the receiving side of the membrane, however, some distortion of the injected volume element is observed, especially with large injection potentials. These results for asymmetric membranes agree qualitatively with two-dimensional numerical simulations of injections across a single slit pore, which suggest that the direction-selective transport behavior is related to electrophoretic transport of the anionic fluorescein probe. Reproducible, high quality injections are also achieved in symmetric Au NCAMs having an embedded gold nanoband region within the nanopores. Nanoband Au NCAMs are excellent candidates for a range of applications, including high efficiency electrochemical sensing, electrochemically catalyzed conversion or pretreatment and label free sensing utilizing extraordinary optical transmission. EOF pumping could be an alternative to electrokinetic injections in some applications, however, this approach is only useful for relatively large pore sizes (>400 nm) and presents considerably worse sample spreading via Taylor dispersion.
机译:将金属元素引入支持电动传输的微流体装置中会产生一些相对于金属的高电导率的基本问题,这些问题可能会导致电流分流,对传输过程产生深远影响。在这里,我们研究了在多层微流体体系结构中使用Au包被的纳米毛细管阵列膜(Au NCAM)作为电可寻址流体控制元件。提出了三种在Au NCAM上进行流体注入的替代方法:在一侧涂有Au的NCAM上进行电动注入(不对称NCAM),在具有嵌入式Au层的NCAM上进行电动注入(对称NCAM)和无电场电渗流(EOF)跨任一类型的Au NCAM抽运。跨非对称NCAM的注入效率取决于非对称膜相对于驱动电位的方向。当Au涂层位于膜的接收侧时,可以进行有效的注入,但是,观察到注入的体积元素会发生某些变形,尤其是在注入势较大的情况下。这些不对称膜的结果与单个狭缝孔内注射的二维数值模拟在质量上是一致的,这表明方向选择性的传输行为与阴离子荧光素探针的电泳传输有关。在具有在纳米孔内嵌入金纳米带区域的对称Au NCAM中,也可以实现可重复的高质量注射。纳米带金NCAMs是一系列应用的极佳候选者,包括高效电化学传感,电化学催化转化或预处理以及利用非凡光学传输的无标记传感。 EOF泵在某些应用中可以替代电动进样,但是,这种方法仅适用于相对较大的孔径(> 400 nm),并且通过泰勒分散法会导致样品扩散更差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号