首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Perturbation of Microfluidic Transport Following Electrokinetic Injection through a Nanocapillary Array Membrane: Injection and Biphasic Recovery
【24h】

Perturbation of Microfluidic Transport Following Electrokinetic Injection through a Nanocapillary Array Membrane: Injection and Biphasic Recovery

机译:通过纳米毛细管阵列膜的电动注射后微流体运输的扰动:注射和双相回收。

获取原文
获取原文并翻译 | 示例
           

摘要

Ionic transport in nanopores is dependent on the nature of the electrical communication between the pores and the surrounding environment. A particularly useful fluidic device structure uses nanopores in nanocapillary array membranes (NCAMs) as electrically switchable valves between vertically separated microfluidic channels. In the off-state, the gate isolates the fluidic environments in the microchannels, but when the appropriate forward-bias voltage is applied, it selectively allows ions and analytes to move between the microchannels. However, the populations of species in the microfluidic channels are perturbed from their steady-state values due to ion accumulation and depletion effects. Experiments conducted here characterize the electrical conduction along the length of a microfluidic channel, and laser-induced fluorescence probes the formation of a highland low-concentration regions of fluorescent dye before and after application of forward- and reverse-bias voltage pulses in both small (a = 10 nm) and large (a = 100 nm) pore NCAMs. In all cases, switching from injection (transport across the NCAM) to microfluidic flow (transport only in the microfluidic channel) results in a multiphasic current recovery profile, signifying the presence of ion accumulation and depletion regions at the microfluidic—nanofluidic boundary, that is, in the region adjacent to the NCAM. The behavior is consistent with a model in which a volume of altered ion concentration is created at the microfluidic—nanofluidic boundary upon injection. Switching back to microfluidic flow causes this altered conductivity region to be swept from the microfluidic channel, re-establishing the steady state conduction properties.
机译:纳米孔中的离子迁移取决于孔与周围环境之间电连通的性质。一种特别有用的流体装置结构使用纳米毛细管阵列膜(NCAM)中的纳米孔作为垂直分离的微流体通道之间的电切换阀。在关闭状态下,门隔离了微通道中的流体环境,但是当施加适当的正向偏压时,它选择性地允许离子和分析物在微通道之间移动。然而,由于离子累积和耗尽效应,微流体通道中的物种种群从其稳态值受到干扰。此处进行的实验表征了沿微流体通道长度的电导率,激光诱导的荧光探针在施加小和小正向和反向偏压脉冲之前和之后均会形成荧光染料的高地低浓度区域。 a = 10 nm)和大孔径(a = 100 nm)的NCAM。在所有情况下,从注入(通过NCAM传输)切换到微流体流(仅在微流体通道中传输)会导致多相电流恢复曲线,这表明在微流体-纳米流体边界处存在离子积聚和耗尽区域。 ,在邻近NCAM的区域中。该行为与模型一致,在模型中,注射后会在微流体-纳米流体边界处产生大量改变的离子浓度。切换回微流体流会导致此更改的电导率区域从微流体通道中清除,从而重新建立稳态的传导特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号