首页> 外文学位 >Nanocapillary Membrane Devices: A Study in Electrokinetic Transport Phenomena.
【24h】

Nanocapillary Membrane Devices: A Study in Electrokinetic Transport Phenomena.

机译:纳米毛细管膜装置:电动迁移现象的研究。

获取原文
获取原文并翻译 | 示例

摘要

There is considerable interest in developing micro-total analysis systems, also known as lab-on-a-chip devices, for applications in chemical and biological analysis. These devices often employ electrokinetic transport phenomena to move, mix, concentrate and separate dissolved species. The details of these phenomena in micro- and nanometer scale geometries are not fully understood; consequently, the basic principles of device operation are often unclear. For example, nanocapillary membranes (NCM) and other nanometer-sized passages can exhibit charge-selectivity and rectification effects similar to those observed in biological membranes. This dissertation addresses several issues related to ion transport in these membranes. Leading-order 1D steady-state models for diffusion-layer modulated transport through non-ideal membranes are used to study ionic rectification in geometrically asymmetric devices. These models provide qualitative explanations of the operation of a variety of fluidic rectifiers and experimentally observed hysteresis effects. By taking the first steps in the full boundary-layer analysis of the model, it is shown that non-ideal membranes do not maintain local electro-neutrality under passage of electric current. This is in contrast to the usual assumption of membrane local electro-neutrality, but is compatible with the existence of the non-equilibrium macroscopic space charge known to appear in the flanking electrolyte and the requirement of overall charge conservation. Lastly, the problem of electrokinetic instability due to non-equilibrium electro-osmotic slip is considered for the case of an electrolyte-membrane interface inside a 2D channel.
机译:开发用于化学和生物学分析的微总分析系统(也称为芯片实验室设备)引起了极大的兴趣。这些设备经常利用电动传输现象来移动,混合,浓缩和分离溶解的物质。这些现象在微米和纳米尺度的几何结构中的细节还没有被完全理解。因此,设备操作的基本原理常常不清楚。例如,纳米毛细管膜(NCM)和其他纳米尺寸的通道可以表现出类似于在生物膜中观察到的电荷选择性和整流效应。本文解决了与这些膜中离子迁移有关的几个问题。用于通过非理想膜的扩散层调制传输的前导一维稳态模型用于研究几何不对称器件中的离子整流。这些模型对各种流体整流器的操作和实验观察到的磁滞效应提供了定性的解释。通过在模型的完整边界层分析中采取第一步,可以证明非理想膜在电流通过时不会保持局部电中性。这与膜局部电中性的通常假设相反,但是与已知在侧翼电解质中出现的非平衡宏观空间电荷的存在和总体电荷守恒的要求兼容。最后,对于2D通道内的电解质-膜界面的情况,考虑了由于不平衡的电渗漏滑而引起的电动不稳定的问题。

著录项

  • 作者

    Schiffbauer, Jarrod.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Applied Mathematics.;Physics Theory.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号