首页> 外文期刊>Lab on a chip >Development of a biomimetic microfluidic oxygen transfer device
【24h】

Development of a biomimetic microfluidic oxygen transfer device

机译:仿生微流氧转移装置的研制

获取原文
获取原文并翻译 | 示例
           

摘要

Blood oxygenators provide crucial life support for patients suffering from respiratory failure, but their use is severely limited by the complex nature of the blood circuit and by complications including bleeding and clotting. We have fabricated and tested a multilayer microfluidic blood oxygenation prototype designed to have a lower blood prime volume and improved blood circulation relative to current hollow fiber cartridge oxygenators. Here we address processes for scaling the device toward clinically relevant oxygen transfer rates while maintaining a low prime volume of blood in the device, which is required for clinical applications in cardiopulmonary support and ultimately for chronic use. Approaches for scaling the device toward clinically relevant gas transfer rates, both by expanding the active surface area of the network of blood microchannels in a planar layer and by increasing the number of microfluidic layers stacked together in a three-dimensional device are addressed. In addition to reducing prime volume and enhancing gas transfer efficiency, the geometric properties of the microchannel networks are designed to increase device safety by providing a biomimetic and physiologically realistic flow path for the blood. Safety and hemocompatibility are also influenced by blood-surface interactions within the device. In order to further enhance device safety and hemocompatibility, we have demonstrated successful coating of the blood flow pathways with human endothelial cells, in order to confer the ability of the endothelium to inhibit coagulation and thrombus formation. Blood testing results provide confirmation of fibrin clot formation in non-endothelialized devices, while negligible clot formation was documented in cell-coated devices. Gas transfer testing demonstrates that the endothelial lining does not reduce the transfer efficiency relative to acellular devices. This process of scaling the microfluidic architecture and utilizing autologous cells to line the channels and mitigate coagulation represents a promising avenue for therapy for patients suffering from a range of acute and chronic lung diseases.
机译:血液充氧器为患有呼吸衰竭的患者提供了至关重要的生命支持,但由于血液回路的复杂性质以及包括出血和凝血在内的并发症,严重限制了它们的使用。我们已经制造并测试了多层微流体血液氧合原型,该原型设计成相对于当前的中空纤维盒式充氧器具有较低的血液原体积和改善的血液循环。在这里,我们介绍了将设备缩放为与临床相关的氧气传输速率,同时保持设备中血液的低主要体积的过程,这是心肺支持临床应用以及最终长期使用所必需的。解决了通过扩大平面层中的血液微通道网络的有效表面积并通过增加在三维装置中堆叠在一起的微流体层的数量来将装置按临床上相关的气体传输速率进行缩放的方法。除了减少主要体积并提高气体传输效率外,微通道网络的几何特性还通过为血液提供仿生和生理上现实的流动路径来提高设备安全性。安全性和血液相容性还受设备内血液表面相互作用的影响。为了进一步提高设备的安全性和血液相容性,我们已经证明成功地用人内皮细胞包被了血流通道,从而赋予了内皮抑制凝血和血栓形成的能力。血液测试结果证实了在非内皮化装置中血纤蛋白凝块的形成,而在细胞包被的装置中血凝块形成的报道可忽略不计。气体传输测试表明,相对于无细胞设备,内皮衬里不会降低传输效率。缩放微流体结构并利用自体细胞排列通道并减轻凝血的这一过程为治疗一系列急性和慢性肺部疾病的患者提供了一条有希望的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号