首页> 外文期刊>Numerical Heat Transfer, Part B. Fundamentals: An International Journal of Computation and Methodology >Large-eddy simulation of heavy-particle transport in turbulent channel flow
【24h】

Large-eddy simulation of heavy-particle transport in turbulent channel flow

机译:湍流通道中重粒子输运的大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Large-eddy simulations are carried out for a particle-laden vertical turbulent channel flow at Reynolds number of 180 based on friction velocity and channel half-width. To minimize the numerical and aliasing errors, a fourth-order compact finite-volume method in space and a fourth-order Runge-Kutta method in time along with a dynamic Smagorinsky model with explicit filter-grid size ratio 2 have been used to solve the filtered equations of the carrier flow. Heavy, small particle motion is governed by drag, gravitational, and Saffman lift forces in the Lagrangian frame. These particle equations are integrated in time using a second-order Adams-Bashforth method. The effect of subgrid-scale (SGS) fluctuations on particle statistics has been studied using two models available in the literature, with and without considering SGS velocity temporal correlation. In addition, a new model is implemented in this work to account for the anisotropy of flow. The results show that in the near-wall region the effect of SGS fluctuations on particle statistics is considerable, especially for small particle size of the order of 1 mu m. The fluctuation levels of the wall-normal and spanwise directions of 1-mu m lycopodium particle velocity are influenced strongly by SGS fluctuations and they are accentuated when the SGS effects are considered. The results for the 1-mu m lycopodium particle show that the new model, which accounts for SGS anisotropy and Lagrangian temporal correlations of SGS fluctuations, yields improved results for particle turbulent intensity, especially in the near-wall region, when compared with other models. The effect of Saffman lift force on particle turbulent intensity is increased by increasing particle Reynolds number, especially in the wall-normal and spanwise directions.
机译:基于摩擦速度和通道半宽度,对雷诺数为180的载有颗粒的垂直湍流通道进行了大涡模拟。为了使数值误差和混叠误差最小化,已使用空间中的四阶紧致有限体积方法和及时的四阶Runge-Kutta方法以及具有显式滤网-网格尺寸比2的动态Smagorinsky模型来解决该问题。载流的滤波方程。拉格朗日框架中的重,小粒子运动由阻力,重力和萨夫曼升力控制。这些粒子方程使用二阶Adams-Bashforth方法及时积分。使用和不考虑SGS速度时间相关性的文献中的两个模型,研究了亚网格规模(SGS)波动对粒子统计的影响。另外,在这项工作中实现了一个新模型来解决流动的各向异性。结果表明,在近壁区域,SGS波动对颗粒统计的影响是相当大的,特别是对于1μm量级的小颗粒。 SGS波动强烈影响1-μmlycopodium粒子速度的壁法线方向和展向方向的波动水平,考虑SGS效应时,波动水平会加剧。 1微米糖精子颗粒的结果表明,与其他模型相比,该新模型考虑了SGS各向异性和SGS涨落的拉格朗日时间相关性,对于颗粒湍流强度(特别是在近壁区域)产生了改进的结果。 。萨夫曼提升力对粒子湍流强度的影响通过增加粒子雷诺数而增加,尤其是在壁法线方向和展向方向上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号