首页> 外文学位 >Large-Eddy Simulations of Fully Developed Turbulent Channel and Pipe Flows with Smooth and Rough Walls.
【24h】

Large-Eddy Simulations of Fully Developed Turbulent Channel and Pipe Flows with Smooth and Rough Walls.

机译:充分发展的具有光滑和粗糙壁面的湍流通道和管道流动的大涡模拟。

获取原文
获取原文并翻译 | 示例

摘要

Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
机译:湍流研究通常集中在两种流动条件上,这两种条件在现实世界的流动中经常发生,并且因其在推进湍流理论中的价值而广受欢迎。这些是高雷诺数法和壁表面粗糙度的影响。在本文中,大涡模拟(LES)在宽范围的雷诺数Retau = O(102)-O(108)上重建两个条件,并通过局部模拟近壁各向异性精细尺度的统计效应来解释粗糙度在粗糙表面上方的薄层中。引入了一个子网格,经过粗糙度校正的壁模型,以将这种建模信息从壁动态传输到外部LES,该模型使用了在大部分流量中运行的拉伸涡流子网格规模模型。主要关注的是这些流的雷诺数和粗糙度对一阶和二阶统计量的依赖性。 LES首先应用于完全湍流的均匀光滑/粗糙的通道流,以捕获在平滑,过渡粗糙和完全粗糙状态下的流动动力学。结果包括壁平均摩擦系数的穆迪图,据信这是从LES获得的同类曲线中的第一个。在归一化的流向湍流强度中,实验观察到的对数行为得到了证实。当Re tau≥O(106)且在完全粗糙的情况下,对于光滑的壁流,发现了严格的对数坍塌,取决于壁的摩擦速度。由于壁模型是局部且动态运行的,因此该框架用于研究通道中粗糙度不均匀的情况,在该情况下,研究了对突然的表面变化的流量调节。在各种粗糙度和雷诺数水平下,定性和定量地讨论了转变后的平均量恢复和湍流统计。计算内部边界层,该边界层定义为受新的表面条件影响的流与未受影响的部分之间的边界,并在包含雷诺数对数的长度尺度上显示轮廓的塌陷。最后,我们转向扩展当前框架以适应更一般几何形状的可能性。第一步,修改整个LES框架,以将其用于完全发展的湍流管道的曲线几何中,并在能够处理复杂壁轮廓的光谱元素求解器中进行实施。摩擦系数与超级管道数据显示出良好的一致性,对数律的卡曼常数和加性常数的LES估计与实验获得的值非常匹配。

著录项

  • 作者

    Saito, Namiko.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号