...
首页> 外文期刊>Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology >HEAT TRANSFER IN TURBULENT BOUNDARY LAYERS OF CONICAL AND BELL SHAPED ROCKET NOZZLES WITH COMPLEX WALL TEMPERATURE
【24h】

HEAT TRANSFER IN TURBULENT BOUNDARY LAYERS OF CONICAL AND BELL SHAPED ROCKET NOZZLES WITH COMPLEX WALL TEMPERATURE

机译:复杂壁温的圆锥形和钟形火箭喷嘴湍流边界层中的热传递

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this article is to perform detailed analysis of heat transfer in accelerated supersonic nozzle flows with cooled walls. Since most of the heat transfer occurs near the nozzle walls, correct prediction of the boundary layer under strong adverse pressure gradient is therefore required to achieve high fidelity numerical prediction. In this study, a two-equation SST-V turbulence model is used in conjunction with a second-order explicit-implicit method to solve axisymmetric compressible Navier-Stokes equations. First, the effect of the inlet pipe diameter and the associated contraction area on the heat transfer is studied in nozzles having 15° and 30° diverging half-angles. Then, a series of computations are conducted to examine the efficiency of the use of a constant wall temperature as a function of the stagnation temperature in heat transfer calculations. The computations are performed for nominal stagnation pressure of 208N/cm2 and stagnation temperature of 539 K. The computed heat-transfer coefficients are compared to experimental data and a good agreement is found. A pronounced increase in the throat heat transfer coefficient peak is observed accompanied with a reduction in the contraction area ratio. Also, the peak of the heat transfer coefficient for the pipe inlet diameter of 7.8 cm is found to be 70% higher than the one related to the pipe of 16.51 cm diameter.
机译:本文的目的是对带有冷却壁的加速超音速喷嘴流中的传热进行详细分析。由于大多数传热发生在喷嘴壁附近,因此需要对强负压梯度下的边界层进行正确预测才能实现高保真度数值预测。在这项研究中,将二方程SST-V湍流模型与二阶显式-隐式方法结合使用来求解轴对称可压缩Navier-Stokes方程。首先,在具有15°和30°发散半角的喷嘴中研究了进气管直径和相关的收缩面积对传热的影响。然后,进行一系列计算以检查在传热计算中使用恒定壁温作为停滞温度的函数的效率。对名义停滞压力为208N / cm2,停滞温度为539 K进行了计算。将计算出的传热系数与实验数据进行了比较,发现了很好的一致性。观察到喉部传热系数峰值显着增加,同时收缩面积比减小。另外,发现对于7.8cm的管道入口直径的传热系数的峰值比与16.51cm直径的管道有关的传热系数的峰值高70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号