首页> 外文期刊>Numerical Methods for Partial Differential Equations: An International Journal >Stability Analysis for Singularly Perturbed Differential Equations by the Upwind Difference Scheme
【24h】

Stability Analysis for Singularly Perturbed Differential Equations by the Upwind Difference Scheme

机译:迎风差分格式对奇摄动微分方程的稳定性分析

获取原文
获取原文并翻译 | 示例
           

摘要

For solving singularly perturbed differential equations (SPDE), the upwind difference scheme (UDS) and the fitted difference method are chosen. The local refinements of grids are adopted in singular layers with the minimal meshspacing h_(min) = O(hε), where h is the maximal meshspacing, and ε(? 1) a very small parameter. The traditional condition number in 2-norm is given by Cond = O(h~(-2)ε~(-1)). For the infinitesimal ε(≤ 10~(-8)) in application, the huge Cond issues a dilemma regarding whether the numerical solutions by the UDS can be trusted. Although the UDS has been used for several decades, such a dilemma has not been clarified yet. The goal of this article is to clarify this dilemma. To this end, we solicit the effective condition number Cond_eff in Li et al. Numer Linear Algebra Appl 15 (2008), 575-690 Effective condition for Numerical Partial Different Equation, 2013, and develop a new actual condition number from the maximum principle. Both of them may offer much smaller bounds of the solution errors caused by perturbation, e.g., rounding, truncation, or discritization errors.We study the Dirichlet problems of SPDE by the UDS in a rectangle. When the Dirichlet boundary condition on the downwind side is homogeneous, we derive Cond_eff = O(1/h~(1/2)). When the entire Dirichlet boundary conditions are homogeneous, the extraordinary bound, Cond_eff = O(1), is achieved. Moreover, we derive the actual condition numbers as Cond_actual = O(1/h~(1/2)) and Cond_actual = O(1h) for the homogeneous and the nonhomogeneous SPDE, respectively. Note that these bounds do not depend on ε; this is distinct from the traditional Cond. Based on the analysis of this article, the existing dilemma caused by Cond has been removed, to grant a good stability of the UDS for SPDE.
机译:为了求解奇摄动微分方程(SPDE),选择了迎风差分方案(UDS)和拟合差分法。在具有最小网格间距h_(min)= O(hε)的奇异层中采用网格的局部细化,其中h是最大网格间距,而ε(?1)是非常小的参数。 2-范数的传统条件数由Cond = O(h〜(-2)ε〜(-1))给出。对于应用中的无穷小ε(≤10〜(-8)),巨大的Cond带来了关于UDS的数值解是否值得信任的难题。尽管UDS已经使用了几十年,但这种困境尚未得到澄清。本文的目的是澄清这一难题。为此,我们在Li et al。中要求有效条件编号Cond_eff。 Numer Linear Algebra Appl 15(2008),575-690数值偏微分方程的有效条件,2013,并根据最大原理开发了一个新的实际条件编号。两者都可以提供由扰动引起的求解误差的较小范围,例如舍入,截断或离散化误差。我们研究了矩形中UDS引起的SPDE的Dirichlet问题。当顺风的Dirichlet边界条件为均质时,我们推导Cond_eff = O(1 / h〜(1/2))。当整个Dirichlet边界条件是均质的时,将获得非凡边界Cond_eff = O(1)。此外,对于同质和非同质SPDE,我们分别得出实际条件数为Cond_actual = O(1 / h〜(1/2))和Cond_actual = O(1h)。请注意,这些界限不取决于ε;这与传统的Cond不同。根据本文的分析,消除了由Cond引起的现有难题,从而为SPDE提供了良好的UDS稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号