...
首页> 外文期刊>Nonlinearity >The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca~(2+) oscillation
【24h】

The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca~(2+) oscillation

机译:动态系统和网络的势能和通量分布,李雅普诺夫函数和非平衡热力学及其在信号诱导的Ca〜(2+)振荡中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this review, we summarize our recent efforts in exploring the non-equilibrium potential and flux landscape for dynamical systems and networks. The driving force of non-equilibrium dynamics can be decomposed into the gradient of the non-equilibrium potential and the divergent free probability flux divided by the steady-state probability distribution. The potential landscape is linked to the probability distribution of the steady state. We found that the intrinsic potential landscape in the zero noise limit is a Lyapunov function. We have defined and quantified the entropy, energy and free energy of the non-equilibrium systems. These can be used for formulating the first law of non-equilibrium thermodynamics. The free energy of the non-equilibrium system is also a Lyapunov function. Therefore, we can use both the intrinsic potential landscape and the free energy to quantify the robustness and global stability of the system. The Lyapunov property provides the formulation for the second law of non-equilibrium thermodynamics. The non-zero probability flux breaks the detailed balance. The two driving forces from the gradient of intrinsic potential landscape and the probability flux are perpendicular to each other under the zero noise limit. We investigate the dynamics of a new biological example of signal-induced Ca~(2+) oscillation. We explored the underlying potential landscape which shows a Mexican hat shape attracting the system down to the oscillation ring and the flux which provides the driving force on the ring for coherent and stable oscillation. We explored how the landscape and flux topography change with respect to the system parameters and the relationship to the period of oscillations and how the non-equilibrium free energy changes with respect to different dynamic phases and phase transitions when the system parameters vary. These explain how the system becomes robust and stable under different conditions and can help guide the experiment.
机译:在这篇综述中,我们总结了我们最近在探索动力系统和网络的非平衡势和通量格局方面所做的努力。非平衡动力学的驱动力可分解为非平衡势的梯度和发散的自由概率通量除以稳态概率分布。势态与稳定状态的概率分布相关。我们发现零噪声极限内的固有势态是李雅普诺夫函数。我们已经定义和量化了非平衡系统的熵,能量和自由能。这些可用于制定非平衡热力学第一定律。非平衡系统的自由能也是李雅普诺夫函数。因此,我们可以使用内在势态图和自由能来量化系统的鲁棒性和全局稳定性。 Lyapunov性质为非平衡热力学第二定律提供了公式。非零概率通量破坏了详细的平衡。在零噪声限制下,来自固有势态梯度和概率通量的两个驱动力彼此垂直。我们调查动力学的信号诱导Ca〜(2+)振荡的一个新的生物学例子。我们探索了潜在的潜在景观,该景观显示出墨西哥帽形状,将系统吸引到振荡环,而磁通量为环提供了驱动力,以实现连贯且稳定的振荡。我们研究了景观和通量地形如何随系统参数变化以及与振荡周期的关系,以及当系统参数变化时非平衡自由能如何随不同的动态相位和相变而变化。这些解释了系统在不同条件下如何变得强大和稳定,并可以帮助指导实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号