首页> 外文期刊>Drones >UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System
【24h】

UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System

机译:基于无人机的混凝土桥梁低空遥感多类别损伤自动检测系统

获取原文
获取原文并翻译 | 示例

摘要

Detecting damage in bridges can be an arduous task, fraught with challenges stemming from the limitations of the inspection environment and the considerable time and resources required for manual acquisition. Moreover, prevalent damage detection methods rely heavily on pixel-level segmentation, rendering it infeasible to classify and locate different damage types accurately. To address these issues, the present study proposes a novel fully automated concrete bridge damage detection system that harnesses the power of unmanned aerial vehicle (UAV) remote sensing technology. The proposed system employs a Swin Transformer-based backbone network, coupled with a multi-scale attention pyramid network featuring a lightweight residual global attention network (LRGA-Net), culminating in unprecedented breakthroughs in terms of speed and accuracy. Comparative analyses reveal that the proposed system outperforms commonly used target detection models, including the YOLOv5-L and YOLOX-L models. The proposed system's robustness in visual inspection results in the real world reinforces its efficacy, ushering in a new paradigm for bridge inspection and maintenance. The study findings underscore the potential of UAV-based inspection as a means of bolstering the efficiency and accuracy of bridge damage detection, highlighting its pivotal role in ensuring the safety and longevity of vital infrastructure.
机译:检测桥梁的损坏可能是一项艰巨的任务,充满了来自检查环境的限制以及手动采集所需的大量时间和资源的挑战。此外,流行的损伤检测方法严重依赖像素级分割,因此无法准确分类和定位不同的损伤类型。针对这些问题,本研究提出了一种利用无人机遥感技术的新型全自动混凝土桥梁损伤检测系统。所提出的系统采用了基于Swin Transformer的骨干网络,再加上一个具有轻量级残余全局注意力网络(LRGA-Net)的多尺度注意力金字塔网络,最终在速度和准确性方面取得了前所未有的突破。对比分析表明,所提出的系统优于常用的目标检测模型,包括YOLOv5-L和YOLOX-L模型。所提出的系统在现实世界中的目视检查结果的鲁棒性增强了其有效性,为桥梁检查和维护开创了新的范式。研究结果强调了基于无人机的检查作为提高桥梁损坏检测效率和准确性的一种手段的潜力,突出了其在确保重要基础设施的安全和寿命方面的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号