首页> 外文期刊>Journal of the Brazilian Society of Mechanical Sciences and Engineering >Parameter closed-loop optimization for pure electric vehicles: unified design of power system and control parameters
【24h】

Parameter closed-loop optimization for pure electric vehicles: unified design of power system and control parameters

机译:纯电动汽车参数闭环优化:动力系统与控制参数统一设计

获取原文
获取原文并翻译 | 示例

摘要

To solve the problem of unreasonable vehicle parameters caused by unknown curb mass and open-loop power system and control strategy optimization in the development of pure electric vehicles, this paper presents a parameter closed-loop optimization algorithm (COA) via unified design of system and control parameters. First, a mass closed-loop algorithm (MCA) was adopted to optimize the parameters of power systems under an unknown curb mass and its convergence was proven. Next, with energy consumption being the index function, the torque distributions of the front and rear motors were optimized by dynamic programming (DP). Additionally, vehicle power system and control strategy parameter optimization were realized by combining the MCA, DP, and genetic algorithm. Finally, two comparative optimization algorithms which are the assumed curb mass optimization algorithm (AOA) and the torque equal ratio distribution optimization algorithm (TOA) were implemented to validate the proposed algorithm. The simulation results under China light-duty vehicle test cycle-passenger car (CLTC-P) and New European Driving Cycle (NEDC) operating conditions indicate that the proposed algorithm achieves minimum energy consumption compared with the competing optimization algorithms. The energy consumption resulting from the COA is reduced by 18.98 and 6.36, compared with those of the TOA and AOA, respectively, under CLTC-P conditions. The energy consumption of the COA is 16.57 and 6.91 lower than those of the TOA and AOA, respectively, under NEDC conditions. This algorithm can optimize the curb mass, peak powers of the motors, mass of the motors, battery energy, battery mass, and torque distribution coefficient simultaneously, and can be applied to different operating conditions.
机译:针对纯电动汽车发展中整备质量未知、动力系统开环导致的车辆参数不合理问题及控制策略优化问题,提出一种通过统一设计系统和控制参数的参数闭环优化算法(COA)。首先,采用质量闭环算法(MCA)对未知路缘质量下的电力系统参数进行优化,并证明了其收敛性;其次,以能耗为指标函数,通过动态规划(DP)对前后电机的转矩分布进行优化。此外,结合MCA、DP和遗传算法,实现了整车动力系统和控制策略参数优化。最后,采用假设整备质量优化算法(AOA)和扭矩等比比优化算法(TOA)两种对比优化算法对所提算法进行了验证。中国轻型车测试循环乘用车(CLTC-P)和新欧洲驾驶循环(NEDC)工况下的仿真结果表明,与竞争优化算法相比,所提算法实现了最低能耗。在CLTC-P条件下,COA产生的能耗分别比TOA和AOA降低了18.98%和6.36%。COA的能耗为16.57%和6。在NEDC条件下,分别比TOA和AOA低91%。该算法可以同时优化电机的整备质量、峰值功率、电机质量、电池能量、电池质量和转矩分配系数,并可应用于不同的工况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号