...
首页> 外文期刊>Neurosurgical focus >Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface
【24h】

Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface

机译:立体脑电图在脑机界面中连续二维光标控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Stereoelectroencephalography (SEEG) is becoming more prevalent as a planning tool for surgical treatment of intractable epilepsy. Stereoelectroencephalography uses long, thin, cylindrical "depth" electrodes containing multiple recording contacts along each electrode's length. Each lead is inserted into the brain percutaneously. The advantage of SEEG is that the electrodes can easily target deeper brain structures that are inaccessible with subdural grid electrodes, and SEEG does not require a craniotomy. Brain-machine interface (BMI) research is also becoming more common in the Epilepsy Monitoring Unit. A brain-machine interface decodes a person's desired movement or action from the recorded brain activity and then uses the decoded brain activity to control an assistive device in real time. Although BMIs are primarily being developed for use by severely paralyzed individuals, epilepsy patients undergoing invasive brain monitoring provide an opportunity to test the effectiveness of different invasive recording electrodes for use in BMI systems. This study investigated the ability to use SEEG electrodes for control of 2D cursor velocity in a BMI. Two patients who were undergoing SEEG for intractable epilepsy participated in this study. Participants were instructed to wiggle or rest the hand contralateral to their SEEG electrodes to control the horizontal velocity of a cursor on a screen. Simultaneously they were instructed to wiggle or rest their feet to control the vertical component of cursor velocity. The BMI system was designed to detect power spectral changes associated with hand and foot activity and translate those spectral changes into horizontal and vertical cursor movements in real time. During testing, participants used their decoded SEEG signals to move the brain-controlled cursor to radial targets that appeared on the screen. Although power spectral information from 28 to 32 electrode contacts were used for cursor control during the experiment, post hoc analysis indicated that better control may have been possible using only a single SEEG depth electrode containing multiple recording contacts in both hand and foot cortical areas. These results suggest that the advantages of using SEEG for epilepsy monitoring may also apply to using SEEG electrodes in BMI systems. Specifically, SEEG electrodes can target deeper brain structures, such as foot motor cortex, and both hand and foot areas can be targeted with a single SEEG electrode implanted percutaneously. Therefore, SEEG electrodes may be an attractive option for simple BMI systems that use power spectral modulation in hand and foot cortex for independent control of 2 degrees of freedom.
机译:立体脑电图(SEEG)作为治疗难治性癫痫的计划工具正变得越来越普遍。立体脑电图使用长,细,圆柱形的“深度”电极,沿着每个电极的长度包含多个记录触点。每根导线都经皮插入大脑。 SEEG的优势在于,电极可以轻松地靶向硬脑膜下网格电极难以接近的更深的大脑结构,并且SEEG不需要开颅手术。脑机接口(BMI)研究也在癫痫监测单元中变得越来越普遍。脑机接口从记录的大脑活动中解码人的所需运动或动作,然后使用解码后的大脑活动实时控制辅助设备。尽管BMI主要是为严重瘫痪的人开发的,但是接受侵入性脑部监测的癫痫患者仍然可以测试在BMI系统中使用的不同侵入性记录电极的有效性。这项研究调查了使用SEEG电极控制BMI中2D光标速度的能力。两名因难治性癫痫而接受SEEG治疗的患者参加了这项研究。指示参与者摆动或将手放在SEEG电极的对侧,以控制屏幕上光标的水平速度。同时,指示他们摆动或休息脚来控制光标速度的垂直分量。 BMI系统旨在检测与手和脚活动相关的功率谱变化,并将这些谱变化实时转换为水平和垂直光标移动。在测试过程中,参与者使用其解码的SEEG信号将大脑控制的光标移动到出现在屏幕上的径向目标。尽管在实验过程中使用了28至32个电极触点的功率谱信息来进行光标控制,但事后分析表明,仅使用单个SEEG深度电极在手部和足部皮质区域都包含多个记录触点,就可以实现更好的控制。这些结果表明,使用SEEG进行癫痫监测的优势也可能适用于在BMI系统中使用SEEG电极。具体而言,SEEG电极可以靶向更深的大脑结构,例如足部运动皮层,而手和脚区域都可以通过经皮植入的单个SEEG电极靶向。因此,对于简单的BMI系统,SEEG电极可能是一个有吸引力的选择,该系统使用手和脚皮质中的功率谱调制来独立控制2个自由度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号