...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >Anticipatory grip force control using a cerebellar model.
【24h】

Anticipatory grip force control using a cerebellar model.

机译:使用小脑模型的预期抓地力控制。

获取原文
获取原文并翻译 | 示例

摘要

Grip force modulation has a rich history of research, but the results remain to be integrated as a neurocomputational model and applied in a robotic system. Adaptive grip force control as exhibited by humans would enable robots to handle objects with sufficient yet minimal force, thus minimizing the risk of crushing objects or inadvertently dropping them. We investigated the feasibility of grip force control by means of a biological neural approach to ascertain the possibilities for future application in robotics. As the cerebellum appears crucial for adequate grip force control, we tested a computational model of the olivo-cerebellar system. This model takes into account that the processing of sensory signals introduces a 100 ms delay, and because of this delay, the system needs to learn anticipatory rather than feedback control. For training, we considered three scenarios for feedback information: (1) grip force error estimation, (2) sensory input on deformation of the fingertips, and (3) as a control, noise. The system was trained on a data set consisting of force and acceleration recordings from human test subjects. Our results show that the cerebellar model is capable of learning and performing anticipatory grip force control closely resembling that of human test subjects despite the delay. The system performs best if the delayed feedback signal carries an error estimation, but it can also perform well when sensory data are used instead. Thus, these tests indicate that a cerebellar neural network can indeed serve well in anticipatory grip force control not only in a biological but also in an artificial system.
机译:握力调制具有丰富的研究历史,但结果仍需整合为神经计算模型并应用于机器人系统。人类表现出的自适应抓地力控制将使机器人能够以足够而最小的力来处理物体,从而将物体压碎或意外掉落的风险降到最低。我们通过生物神经方法研究了抓力控制的可行性,以确定在机器人技术中未来应用的可能性。由于小脑对于控制足够的抓地力至关重要,因此我们测试了小脑小脑系统的计算模型。该模型考虑到感觉信号的处理会引入100 ms的延迟,并且由于该延迟,系统需要学习预期的而不是反馈控制。为了进行训练,我们考虑了三种反馈信息的方案:(1)握力误差估计;(2)指尖变形时的感觉输入;(3)作为控制噪声。该系统在包含来自人类测试对象的力和加速度记录的数据集上进行了训练。我们的研究结果表明,尽管有延迟,但小脑模型仍能够学习并执行预期的抓地力控制,与人类测试对象的控制非常相似。如果延迟的反馈信号带有误差估计,则该系统的性能最佳,但是当使用感官数据代替时,该系统的性能也很好。因此,这些测试表明,小脑神经网络确实可以很好地用于预期的抓地力控制,不仅在生物系统中,而且在人工系统中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号