...
首页> 外文期刊>Materials science & engineering, C. Materials for Biogical applications >Determining the mechanical properties of electrospun poly-epsilon-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique
【24h】

Determining the mechanical properties of electrospun poly-epsilon-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique

机译:使用原子力显微镜和新型纤维锚定技术确定电纺聚ε-己内酯(PCL)纳米纤维的机械性能

获取原文
获取原文并翻译 | 示例

摘要

Due to its low cost, biocompatibility and slow bioresorption, poly-epsilon-caprolactone (PCL) continues to be a suitable material for select biomedical engineering applications. We used a combined atomic force microscopy (AFM)/optical microscopy technique to determine key mechanical properties of individual electrospun PCL nanofibers with diameters between 440-1040 nm. Compared to protein nanofibers, PCL nanofibers showed much lower adhesion, as they slipped on the substrate when mechanically manipulated. We, therefore, first developed a novel technique to anchor individual PCL nanofibers to micrometer-sized ridges on a substrate, and then mechanically tested anchored nanofibers. When held at constant strain, tensile stress relaxed with fast and slow relaxation times of 1.0 +/- 0.3 s and 8.8 +/- 3.1 s, respectively. The total tensile modulus was 62 +/- 26 MPa, the elastic (non-relaxing) component of the tensile modulus was 53 +/- 36 MPa. Individual PCL fibers could be stretched elastically (without permanent deformation) to strains of 19-23%. PCL nanofibers are rather extensible; they could be stretched to a strain of at least 98%, and a tensile strength of at least 12 MPa, before they slipped off the AFM tip. PCL nanofibers that had aged for over a month at ambient conditions became stiffer and less elastic. Our technique provides accurate nanofiber mechanical data, which are needed to guide construction of scaffolds for cells and other biomedical devices. (C) 2015 The Authors. Published by Elsevier B.V.
机译:由于其低成本,生物相容性和缓慢的生物吸收性,聚ε-己内酯(PCL)继续是某些生物医学工程应用的合适材料。我们使用组合原子力显微镜(AFM)/光学显微镜技术来确定直径在440-1040 nm之间的单个电纺PCL纳米纤维的关键机械性能。与蛋白质纳米纤维相比,PCL纳米纤维表现出低得多的粘合性,因为它们在机械操作时会滑落在基材上。因此,我们首先开发了一种新技术,可将单个PCL纳米纤维锚固到基底上的微米级隆起,然后进行机械测试以锚定纳米纤维。当保持恒定应变时,拉伸应力以1.0 +/- 0.3 s和8.8 +/- 3.1 s的快速和慢速松弛时间松弛。总拉伸模量为62 +/- 26 MPa,拉伸模量的弹性(非松弛)组分为53 +/- 36 MPa。单个PCL纤维可以弹性拉伸(没有永久变形),应变为19-23%。 PCL纳米纤维具有相当的可扩展性。在它们从AFM尖端滑落之前,它们可以被拉伸到至少98%的应变和至少12 MPa的拉伸强度。在环境条件下老化一个月以上的PCL纳米纤维变得更硬,弹性更低。我们的技术提供了准确的纳米纤维力学数据,这些数据对于指导细胞和其他生物医学设备支架的构建具有指导意义。 (C)2015作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号