...
首页> 外文期刊>Materials science & engineering, C. Materials for Biogical applications >Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(epsilon-caprolactone) nanofibers by using Box-Behnken design
【24h】

Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(epsilon-caprolactone) nanofibers by using Box-Behnken design

机译:通过使用Box-Behnken设计将生物活性玻璃颗粒掺入明胶/聚ε-己内酯纳米纤维中来制备纳米复合材料垫

获取原文
获取原文并翻译 | 示例

摘要

The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(epsilon-caprolactone) (Fa), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 +/- 337 nm which was:in good agreement with the predicted value by the developed models (523 +/- 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. (C) 2016 Elsevier B.V. All rights reserved.
机译:进行了当前的研究以提出一种纳米复合材料,其可以适合用作骨组织工程应用的支架。为此,成功地通过电纺丝工艺制备了明胶,聚ε-己内酯(Fa)和生物活性玻璃的纳米复合纤维。在这种情况下,采用基于三级四变量Box-Behnken设计的响应面方法作为优化工具,以选择最合适的参数设置以获得所需的纤维直径。基于二阶多项式模型的研究重点在于分析溶液和加工参数对纤维直径及其标准偏差的影响。在最佳条件下(生物活性玻璃含量为7.5%(w / v),施加的电压为25 kV,针尖到收集器的距离为12.5 cm,流速为1 mL / h),发现纤维直径为584 +/- 337 nm,与已开发模型的预测值(523 +/- 290 nm)高度吻合。分析工具,例如扫描电子显微镜,X射线衍射分析,傅立叶变换红外光谱和差热分析仪,被用于进一步评估优化的纳米复合材料垫。总体结果表明,纳米复合材料支架有望成为组织工程应用的有希望的候选者。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号