首页> 外文期刊>Journal of seismology >Seiscloud, a tool for density-based seismicity clustering and visualization
【24h】

Seiscloud, a tool for density-based seismicity clustering and visualization

机译:Seiscloud,一种基于密度的地震聚类和可视化工具

获取原文
获取原文并翻译 | 示例

摘要

Clustering algorithms can be applied to seismic catalogs to automatically classify earthquakes upon the similarity of their attributes, in order to extract information on seismicity processes and faulting patterns out of large seismic datasets. We describe here a Python open-source software for density-based clustering of seismicity named seiscloud, based on the pyrocko library for seismology. Seiscloud is a tool to dig data out of large local, regional, or global seismic catalogs and to automatically recognize seismicity clusters, characterized by similar features, such as epicentral or hypocentral locations, origin times, focal mechanisms, or moment tensors. Alternatively, the code can rely on user-provided distance matrices to identify clusters of events sharing indirect features, such as similar waveforms. The code can either process local seismic catalogs or download selected subsets of seismic catalogs, accessing different global seismicity catalog providers, perform the seismic clustering over different steps in a flexible, easily adaptable approach, and provide results in form of declustered seismic catalogs and a number of illustrative figures. Here, the algorithm usage is explained and discussed through an application to Northern Chile seismicity.
机译:聚类算法可以应用于地震目录,根据地震属性的相似性自动对地震进行分类,以便从大型地震数据集中提取有关地震活动过程和断层模式的信息。我们在这里描述了一个Python开源软件,用于基于密度的地震活动聚类,名为seiscloud,基于pyrocko地震学库。Seiscloud 是一种工具,用于从大型局部、区域或全球地震目录中挖掘数据,并自动识别具有相似特征的地震活动集群,例如震中或次中心位置、起源时间、焦点机制或矩张量。或者,代码可以依靠用户提供的距离矩阵来识别共享间接特征的事件簇,例如相似的波形。该代码可以处理本地地震目录或下载地震目录的选定子集,访问不同的全球地震活动目录提供程序,以灵活、易于调整的方法对不同步骤执行地震聚类,并以解聚的地震目录和一些说明性图的形式提供结果。在这里,通过对智利北部地震活动的应用来解释和讨论算法的用法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号