...
首页> 外文期刊>Neuropharmacology >A beta-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D
【24h】

A beta-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D

机译:β介导的海马脊柱变化是微管依赖性的,可以通过亚纳摩尔浓度的微管稳定剂埃坡霉素D逆转

获取原文
获取原文并翻译 | 示例
           

摘要

Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer's disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-P (All) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to A beta expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses A beta-induced spine loss and increases thin spine density. Taken together the data indicate that A beta causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD. (C) 2016 The Authors. Published by Elsevier Ltd.
机译:树突棘代表兴奋性突触的主要突触后输入。棘的丧失及其形态改变与阿尔茨海默氏病(AD)的认知障碍相关,并且被认为在病理学的早期发生。因此,可能需要在AD的临床前阶段进行治疗干预以改变脊柱变化。为了跟踪发展情况并随着时间的推移潜在地干扰脊柱的变化,我们从APP转基因小鼠和对照小鼠的海马器官型培养物中建立了长期离体模型。培养物在主要海马神经元中表现出脊柱丢失,这与体内发生的变化非常相似,并且脊柱形态逐渐从蘑菇形变为粗短。我们证明,在用γ-分泌酶抑制剂DAPT阻断淀粉样蛋白P(全部)产生后的几天内,脊柱的变化会完全逆转。我们表明,微管破坏药物诺考达唑导致脊柱丢失类似于表达A beta的文化,并抑制APP转基因小鼠切片中DAPT介导的脊柱恢复。最后,我们报道了埃博霉素D(EpoD)处于亚纳摩尔浓度,略微稳定了模型神经元中的微管,完全逆转了Aβ诱导的脊柱丢失并增加了稀薄的脊柱密度。数据合计表明,Aβ通过微管失稳引起脊柱改变,并且脊柱恢复需要微管聚合。此外,我们的研究结果表明,在AD的临床前阶段,较低的亚毒性EpoD浓度足以减少脊柱丢失。 (C)2016作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号