...
首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Ground-based telescope pointing and tracking optimization using a neural controller.
【24h】

Ground-based telescope pointing and tracking optimization using a neural controller.

机译:使用神经控制器的地面望远镜指向和跟踪优化。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and reliability.
机译:神经网络模型(NN)已成为自适应控制理论应用的重要组成部分。它们基于获得的知识的基本泛化能力,以及执行速度和输入激励之间的关联能力,是将NN视为用于复杂系统在线控制的极其强大工具的基本属性。从控制系统的角度来看,不仅需要精确度和速度,而且在某些情况下还需要高水平的适应能力,才能在整个系统的寿命内匹配整个系统的所有工作阶段。对于新一代地面望远镜控制系统而言,这一点尤其显着。实际上,必须在系统速度和瞬时位置误差容忍度方面进行重大更改,尤其是在由于风振引起的轨迹干扰的情况下。在这样的系统中采用的经典控制方案基于比例积分(PI)滤波器,该滤波器已经在大量新一代望远镜上应用并实现,在该技术环境中,这是标准的。在本文中,我们介绍了一种新方法的概念,即神经可变结构比例积分(NVSPI),它与在新一代地面地面Alt-Az望远镜控制系统中实现标准多层感知器网络有关。它的主要目的是提高可变结构比例积分模型的适应能力,可变结构比例积分模型是作者最近提出的一种创新的控制方案[Proc SPIE(1997)],它基于经典PI控制模型的改进版本,具有灵活性和准确性。在存在风噪声影响的情况下,动态响应范围的变化也是如此。强大的经过充分测试和验证的望远镜模型仿真系统的实现,使我们有可能直接比较两种控制方案在模拟跟踪轨迹上的性能,从而在NVSPI控制的鲁棒性和可靠性方面显示出令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号