首页> 外文期刊>European physical journal >Detecting Primordial Gravitational Waves: a forecast study on optimizing frequency distribution of next generation ground-based CMB telescope
【24h】

Detecting Primordial Gravitational Waves: a forecast study on optimizing frequency distribution of next generation ground-based CMB telescope

机译:下一代 地面 望远镜 CMB 的 优化 频率分布 预测 研究 : 探测 原始 引力波

获取原文
           

摘要

Probing primordial gravitational waves is one of the core scientific objectives of the next generation CMB polarization experiment. Integrating more detector modules on the focal plane and performing high accurate observations are the main directions of the next generation CMB polarization telescope, like CMB S4. Also, multi-band observation is required by foreground analysis and reduction, as it is understood that foregrounds have become the main obstacles of CMB polarization measurements. However, ground observation is limited by the atmospheric window and can be usually carried out in one or two bands, like what BICEP or Keck array have done in the south pole. In this paper, we forecast the sensitivity of tensor-to-scalar ratio r that may be achieved by a multi-frequency CMB polarization experiment, basing on which to provide guidance for further expanding frequency bands and optimize the focal plane of a telescope. At the same time, the realization of having two frequency bands in one atmospheric window is discussed. With fixed number of detectors, the simulation results show that, in order to get a good limit, more frequency bands are needed. Better constraints can be obtained when it includes at least three bands, i.e., one CMB channel (95 GHz) + one dust channel (high frequency) and one synchrotron channel (low frequency). For example, 41 + 95 + 220 GHz, which is better than only focusing around the CMB band, like 85 + 105 + 150 GHz, and 95 + 135 + 155 GHz, and this frequency combination is even better than the combination of 41 + 95 + 150 + 220 GHz. As CMB S4 plans to consider two frequency bands in each atmospheric window, and along this way, we find that one CMB band and more bands in synchrotron and dust channels are helpful, for example, 2 bands in lower frequency, 30 + 41 GHz, 2 bands in higher frequency, 220 + 270 GHz, i.e. 30 + 41 + 95 + 220 + 270 GHz, can get better constraints, and in this case, more detectors are asked to be assigned in the CMB channel.
机译:探测原始重力波是下一代CMB极化实验的核心科学目标之一。将更多的检测器模块集成在焦平面上并执行高准确的观察是下一代CMB偏振望远镜的主要方向,如CMB S4。此外,通过前景分析和减少需要多带观察,因为据了解,前景已成为CMB极化测量的主要障碍。然而,地面观察受大气窗口的限制,并且通常可以在一个或两个频段中进行,例如Bicep或Keck阵列在南极中完成了什么。在本文中,我们预测了通过多频CMB偏振实验可以实现的张量向标量R的灵敏度,用于提供进一步扩展频带的引导并优化望远镜的焦平面。同时,讨论了在一个大气窗口中具有两个频带的实现。通过固定数量的探测器,仿真结果表明,为了获得良好的限制,需要更多的频段。当它包括至少三个频带时,可以获得更好的约束,即一个CMB通道(95GHz)+一个灰尘通道(高频)和一个同步rotron通道(低频)。例如,41 + 95 + 220 GHz,它比仅关注CMB频带,如85 + 105 + 150GHz和95 + 135 + 155 GHz,并且这种频率组合甚至比41 +的组合更好95 + 150 + 220 GHz。作为CMB S4计划在每个大气窗口中考虑两个频段,沿着这种方式,我们发现一个CMB频段和同步频道中更多的频带是有帮助的,例如,较低频率的2个频段,30 + 41 GHz, 2频段较高频率,220 + 270 GHz,即30 + 41 + 95 + 220 + 270 GHz,可以获得更好的约束,在这种情况下,要求更多的探测器分配在CMB通道中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号