首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Similarity preserving low-rank representation for enhanced data representation and effective subspace learning
【24h】

Similarity preserving low-rank representation for enhanced data representation and effective subspace learning

机译:保留相似性的低秩表示,以增强数据表示和有效的子空间学习

获取原文
获取原文并翻译 | 示例
           

摘要

Latent Low-Rank Representation (LatLRR) delivers robust and promising results for subspace recovery and feature extraction through mining the so-called hidden effects, but the locality of both similar principal and salient features cannot be preserved in the optimizations. To solve this issue for achieving enhanced performance, a boosted version of LatLRR, referred to as Regularized Low-Rank Representation (rLRR), is proposed through explicitly including an appropriate Laplacian regularization that can maximally preserve the similarity among local features. Resembling LatLRR, rLRR decomposes given data matrix from two directions by seeking a pair of low-rank matrices. But the similarities of principal and salient features can be effectively preserved by rLRR. As a result, the correlated features are well grouped and the robustness of representations is also enhanced. Based on the outputted bi-directional low-rank codes by rLRR, an unsupervised subspace learning framework termed Low-rank Similarity Preserving Projections (LSPP) is also derived for feature learning. The supervised extension of LSPP is also discussed for discriminant subspace learning. The validity of rLRR is examined by robust representation and decomposition of real images. Results demonstrated the superiority of our rLRR and LSPP in comparison to other related state-of-the-art algorithms.
机译:潜在的低秩表示(LatLRR)通过挖掘所谓的隐藏效果为子空间恢复和特征提取提供了可靠且有希望的结果,但是在优化中无法保留相似的主要特征和显着特征的局部性。为了解决此问题以实现增强的性能,通过显式包括适当的Laplacian正则化来提出LatLRR的增强版本,称为正则化低秩表示(rLRR),以最大程度地保留局部特征之间的相似性。 rLRR与LatLRR类似,它通过寻找一对低秩矩阵从两个方向分解给定的数据矩阵。但是,rLRR可以有效地保留主要特征和显着特征的相似性。结果,相关特征被很好地分组,并且表示的鲁棒性也得到增强。基于rLRR输出的双向低秩代码,还导出了一种称为低秩相似性保留投影(LSPP)的无监督子空间学习框架,用于特征学习。还讨论了LSPP的监督扩展,用于判别子空间学习。 rLRR的有效性通过真实图像的鲁棒表示和分解来检验。结果表明,与其他相关的最新技术相比,我们的rLRR和LSPP具有优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号