...
首页> 外文期刊>Nano letters >Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte
【24h】

Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

机译:电池电极和电解液原位运行过程中锂离子分布的纳米成像

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energyloss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio nonlinear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO_4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and image charging dynamics in the cathode. We observe competing delithiation mechanisms such as core?shell and anisotropic growth occurring in parallel for different particles under the same conditions. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in the electrode and electrolyte in a wide range of electrical energy storage systems.
机译:开发新电池材料的主要挑战是了解其基本工作和降解机理。它们的微观非均质性质要求使用表征工具,以提供来自单个颗粒和颗粒的操作信息和局部信息。在这里,我们描述了一种方法,该方法能够在透射电子显微镜液体流通池中对电池进行电化学充电期间成像离子的纳米级分布。我们使用价能损失谱法来跟踪溶剂化离子和嵌入离子,并使用从头算非线性响应理论识别溶剂化离子的电子结构指纹。配备了新的电化学电池架,纳米级光谱学和理论,我们已经能够在纳米级分辨率下实时确定LiFePO_4电极和周围水电解质的锂化状态,该分辨率在电化学充电和放电过程中得以实现。我们跟踪电极和电解质之间的锂转移以及阴极中的图像充电动力学。我们观察到竞争的脱锂机理,例如在相同条件下对不同粒子并行发生的核壳和各向异性生长。该技术代表了在广泛的电能存储系统中对电极和电解质中的电化学活性离子进行操作纳米级成像的通用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号