首页> 外文期刊>Nano Energy >A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets
【24h】

A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets

机译:Li,Na和Mg原子插入Si(111)纳米片的计算研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Based on first principles calculations, we study the interaction of metal atoms (Li, Na, and Mg) with Si(111) nanosheets of different thicknesses. We show that the chemistry of the interactions is sensitive to both the nanosheet thickness and the dopant-surface distance. Both Li and Na atoms adsorb strongly on the nanosheet surface, accompanied by large charge transfers (~0.9e) from the metal atoms to surrounding atoms. In contrast, Mg atoms have weak adsorption. Compared to bulk Si, we show that nanosheet Si is expected to improve the charge/discharge rate of Li/Na/Mg-ion batteries. Nevertheless, due to large insertion barriers (up to the prohibitive ~2.1 and ~3.1. eV for Mg and Na, respectively) and significant energy differences between surface and sub-surface sites (~1.0 and ~1.9. eV for Mg and Na, respectively), the theoretical capacities of Si for both Na-ion and Mg-ion batteries cannot be achieved at realistic charge/discharge rates.
机译:基于第一原理计算,我们研究了金属原子(Li,Na和Mg)与不同厚度的Si(111)纳米片的相互作用。我们证明了相互作用的化学性质对纳米片的厚度和掺杂剂-表面距离均敏感。 Li和Na原子都强烈吸附在纳米片表面上,并伴随着从金属原子到周围原子的大量电荷转移(〜0.9e)。相反,Mg原子吸附较弱。与块状Si相比,我们表明纳米片Si有望提高Li / Na / Mg离子电池的充电/放电速率。然而,由于存在较大的插入势垒(对于Mg和Na分别达到禁止的〜2.1和〜3.1。eV)以及表面和次表面位置之间的明显能量差异(对于Mg和Na分别为〜1.0和〜1.9。eV, ),Na和Mg离子电池的硅理论容量都无法在实际的充电/放电速率下实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号