首页> 外文期刊>Water practice and technology >Development of flood forecasting and warning system using hybrid approach of ensemble and hydrological model for Dharoi Dam
【24h】

Development of flood forecasting and warning system using hybrid approach of ensemble and hydrological model for Dharoi Dam

机译:利用综合和水文模型混合方法开发达罗伊大坝洪水预报预警系统

获取原文
获取原文并翻译 | 示例

摘要

The most frequent natural disaster is flooding. Advanced forecasting systems are lacking in developing countries. The majorityof urban areas are located close to flood plains for rivers. Accurate flood forecasting is necessary for reservoir planning andflood management. The Sabarmati River’s atmospheric-hydrologic ensemble flood forecasting model has been developedusing TIGGE data. Precipitation can be reliably predicted by TIGGE’s global ensemble numerical weather prediction (NWP) systems.By using NWP data, flood forecasting systems may be extended from hours to days. Ensemble weather forecasts areproduced using the European Centre for Medium-Range Weather Forecasts and National Centers for Environmental Predictiontogether with 5-day lead times from TIGGE. The flood occurrences from 2015, 2017, and 2020 were used for the calibration andvalidation of the ensemble flood forecasting model. Bias was corrected using Bayesian model averaging (BMA), heterogeneousextended linear regression, censored non-homogeneous linear regression (cNLR), and other statistical downscaling techniques.Forecasted and downscaled precipitation data were checked using the Brier score and rank likelihood score. For cNLR, Brier’sscore performed admirably. The specificity vs. sensitivity performance of the cNLR and BMA approaches is 91.87 and 91.82,respectively, according to receiver operating characteristic and area under the curve diagrams. Models with the hybrid hydrologiccoupling approach accurately predict floods. Users may predict peak time and peak discharge hazard likelihood withreliability using peak time and flood warning probability distributions.
机译:最常见的自然灾害是洪水。发展中国家缺乏先进的预报系统。大多数城市地区都靠近河流的洪泛平原。准确的洪水预报对于水库规划和洪水管理是必要的。萨巴尔马蒂河的大气-水文集合洪水预报模型是利用TIGGE数据开发的。TIGGE的全球集合数值天气预报(NWP)系统可以可靠地预测降水。通过使用NWP数据,洪水预报系统可以从几小时延长到几天。使用欧洲中期天气预报中心和国家环境预测中心以及 TIGGE 的 5 天准备时间制作整体天气预报。利用2015年、2017年和2020年的洪水发生率对集合洪水预报模型进行校准和验证。使用贝叶斯模型平均 (BMA)、异质扩展线性回归、删失非齐次线性回归 (cNLR) 和其他统计降尺度技术校正偏差。使用Brier评分和秩似然得分检查预测和降尺度的降水数据。对于 cNLR,Brier 的分数表现令人钦佩。根据受试者工作特征和曲线下面积图,cNLR和BMA方法的特异性与灵敏度表现分别为91.87%和91.82%。采用混合水文耦合方法的模型可以准确预测洪水。用户可以使用高峰时间和洪水预警概率分布来预测高峰时间和高峰泄洪危险可能性。

著录项

  • 来源
    《Water practice and technology》 |2023年第11期|2862-2883|共22页
  • 作者

    Anant Patel; S. M. Yadav;

  • 作者单位

    Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, SVNIT-Surat, Gujarat, India,Civil Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India;

    Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, SVNIT-Surat, Gujarat, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 水利工程;
  • 关键词

    ECMWF; ensemble; flood forecasting; hydrological model; reservoir inflow;

    机译:ECMWF;合奏;洪水预报;水文模型;水库流入量;

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号