【24h】

Biological dosimetry for astronauts: a real challenge

机译:宇航员的生物剂量学:一个真正的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage.
机译:最近,载人航天飞行的次数和持续时间都在增加,因此评估宇航员遇到的生物风险变得很重要。它们暴露于宇宙射线和银河射线,这是不同辐射的复杂混合物。除了通过物理剂量计实现的测量之外,估算实际的生物有效剂量并将其与物理剂量进行比较也变得至关重要。使用染色体的细胞遗传学分析已广泛进行了辐射暴露的生物剂量测定。这种方法已经使用了很多年,以估计人类意外或慢性过度暴露的吸收剂量。除常规技术(吉姆萨或FPG染色,R或G谱带)外,还开发了更快,更准确的分析方法(荧光原位杂交[FISH]绘画)。随着结果的累积,似乎在像差的基本水平上存在很强的个体差异。此外,某些像差(如易位)表现出很高的背景水平。辐射暴露似乎会引起个体反应之间的差异。其程度与暴露方式,递送剂量,放射线种类和所使用的细胞遗传学方法有很大差异。本文旨在审查可能影响细胞遗传剂量学可靠性的因素。重点是暴露于太空中的高线性能量转移(LET)粒子,因为最近的研究表明,长期太空飞行后,通过像差分析估算的剂量之间存在个体差异。除了剂量估算问题外,宇宙辐射的异质性还引发了与个体中受损细胞的实际数量以及潜在的长期风险有关的问题。实际上,致密的电离粒子非常有效地诱发后期的染色体不稳定性,并且再次,损伤表达中存在个体差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号