首页> 外文期刊>Molecular pharmacology. >Glutamate-induced ATP synthesis: Relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models
【24h】

Glutamate-induced ATP synthesis: Relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models

机译:谷氨酸诱导的ATP合成:脑和心脏细胞模型中质膜Na + / Ca2 +交换子与兴奋性氨基酸转运蛋白之间的关系

获取原文
获取原文并翻译 | 示例
           

摘要

It is known that glutamate (Glu), the major excitatory amino acid in the central nervous system, can be an essential source for cell energy metabolism. Here we investigated the role of the plasma membrane Na+/Ca 2+ exchanger (NCX) and the excitatory amino acid transporters (EAATs) in Glu uptake and recycling mechanisms leading to ATP synthesis. We used different cell lines, such as SH-SY5Y neuroblastoma, C6 glioma and H9c2 as neuronal, glial, and cardiac models, respectively. We first observed that Glu increased ATP production in SH-SY5Y and C6 cells. Pharmacological inhibition of either EAAT or NCX counteracted the Glu-induced ATP synthesis. Furthermore, Glu induced a plasma membrane depolarization and an intracellular Ca2+ increase, and both responses were again abolished by EAAT and NCX blockers. In line with the hypothesis of a mutual interplay between the activities of EAAT and NCX, coimmunoprecipitation studies showed a physical interaction between them. We expanded our studies on EAAT/NCX interplay in the H9c2 cells. H9c2 expresses EAATs but lacks endogenous NCX1 expression. Glu failed to elicit any significant response in terms of ATP synthesis, cell depolarization, and Ca 2+ increase unless a functional NCX1 was introduced in H9c2 cells by stable transfection. Moreover, these responses were counteracted by EAAT and NCX blockers, as observed in SH-SY5Y and C6 cells. Collectively, these data suggest that plasma membrane EAAT and NCX are both involved in Glu-induced ATP synthesis, with NCX playing a pivotal role.
机译:众所周知,谷氨酸(Glu)是中枢神经系统中的主要兴奋性氨基酸,可能是细胞能量代谢的重要来源。在这里,我们研究了质膜Na + / Ca 2+交换子(NCX)和兴奋性氨基酸转运蛋白(EAAT)在Glu吸收和循环机制中的作用,从而导致ATP合成。我们分别使用了不同的细胞系,例如SH-SY5Y神经母细胞瘤,C6胶质瘤和H9c2作为神经元,神经胶质和心脏模型。我们首先观察到Glu增加了SH-SY5Y和C6细胞中ATP的产生。 EAAT或NCX的药理抑制作用抵消了Glu诱导的ATP合成。此外,Glu引起质膜去极化和细胞内Ca2 +增加,EAAT和NCX阻滞剂再次消除了这两种反应。与EAAT和NCX的活性之间相互相互作用的假设相一致,免疫共沉淀研究表明它们之间存在物理相互作用。我们扩展了对H9c2细胞中EAAT / NCX相互作用的研究。 H9c2表达EAAT,但缺乏内源性NCX1表达。除非通过稳定转染将功能性NCX1引入H9c2细胞,否则Glu无法在ATP合成,细胞去极化和Ca 2+增加方面引起任何显着反应。此外,如在SH-SY5Y和C6细胞中观察到的,这些反应被EAAT和NCX阻滞剂抵消。总的来说,这些数据表明质膜EAAT和NCX都参与了Glu诱导的ATP合成,而NCX发挥了关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号