...
首页> 外文期刊>Molecular pharmacology. >The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited.
【24h】

The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited.

机译:1-甲基-4-苯基吡啶鎓对多巴胺能神经元的选择性毒性:重新探讨了线粒体复合体I和活性氧的作用。

获取原文
获取原文并翻译 | 示例

摘要

1-Methyl-4-phenylpyridinium (MPP(+)) is selectively toxic to dopaminergic neurons and has been studied extensively as an etiologic model of Parkinson's disease (PD) because mitochondrial dysfunction is implicated in both MPP(+) toxicity and the pathogenesis of PD. MPP(+) can inhibit mitochondrial complex I activity, and its toxicity has been attributed to the subsequent mitochondrial depolarization and generation of reactive oxygen species. However, MPP(+) toxicity has also been noted to be greater than predicted by its effect on complex I inhibition or reactive oxygen species generation. Therefore, we examined the effects of MPP(+) on survival, mitochondrial membrane potential (DeltaPsim), and superoxide and reduced glutathione levels in individual dopaminergic and nondopaminergic mesencephalic neurons. MPP(+) (5 microM) selectively induced death in fetal rat dopaminergic neurons and caused a small decrease in their DeltaPsim. In contrast, the specific complex I inhibitor rotenone, at a dose (20 nM) that was less toxic than MPP(+) to dopaminergic neurons, depolarized DeltaPsim to a greater extent than MPP(+). In addition, neither rotenone nor MPP(+) increased superoxide in dopaminergic neurons, and MPP(+) failed to alter levels of reduced glutathione. Therefore, we conclude that increased superoxide and loss of DeltaPsim may not represent primary events in MPP(+) toxicity, and complex I inhibition alone is not sufficient to explain the selective toxicity of MPP(+) to dopaminergic neurons. Clarifying the effects of MPP(+) on energy metabolism may provide insight into the mechanism of dopaminergic neuronal degeneration in PD.
机译:1-甲基-4-苯基吡啶鎓(MPP(+))对多巴胺能神经元有选择性毒性,由于线粒体功能障碍与MPP(+)毒性和发病机理有关,因此已广泛研究为帕金森氏病(PD)的病因学模型。 PD。 MPP(+)可以抑制线粒体复合体I的活性,其毒性已归因于随后的线粒体去极化和活性氧的产生。但是,MPP(+)的毒性也被认为比其对复合物I抑制或活性氧生成的影响要大。因此,我们检查了多巴胺能和非多巴胺能中脑神经元中MPP(+)对存活,线粒体膜电位(DeltaPsim)和超氧化物和谷胱甘肽水平的影响。 MPP(+)(5 microM)在胎儿大鼠多巴胺能神经元中选择性诱导死亡,并导致其DeltaPsim小幅下降。相比之下,特定的复合物I抑制剂鱼藤酮对多巴胺能神经元的毒性小于MPP(+),其剂量(20 nM)使DeltaPsim去极化的程度大于MPP(+)。此外,鱼藤酮和MPP(+)都不会增加多巴胺能神经元中的超氧化物,MPP(+)不能改变还原型谷胱甘肽的水平。因此,我们得出结论,增加的超氧化物和DeltaPsim的损失可能并不代表MPP(+)毒性的主要事件,而且单独的复合物I抑制作用不足以解释MPP(+)对多巴胺能神经元的选择性毒性。弄清楚MPP(+)对能量代谢的影响可能提供洞察PD中多巴胺能神经元变性的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号