...
首页> 外文期刊>Molecular pharmaceutics >Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy
【24h】

Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy

机译:使用共聚焦激光扫描显微镜绘制蛋白质封装的PLGA微球内部的微气候pH分布图

获取原文
获取原文并翻译 | 示例
           

摘要

The pH in the aqueous pores of poly(lactide-co-glycolide) (PLGA) matrix, also referred to as microclimate pH (μpH), is often uncontrolled, ranging from highly acidic to neutral pH range. The μpH distribution inside protein-encapsulated PLGA microspheres was quantitatively evaluated using confocal laser scanning microscopy. The fluorescent response of Lysosensor yellow/blue dextran used to map μpH in PLGA was influenced by the presence of encapsulated protein. The nonprotonated form of pyridyl group on the fluorescence probe at neutral pH was responsible for the interference, which was dependent on the type and concentration of protein. A method for correction of this interference based on estimating protein concentration inside the microspheres was established and validated. After correction of the influence, the μpH distribution kinetics inside microspheres was evaluated for different PLGA 50/50 microsphere formulations under physiological conditions for 4 weeks. Generally, the μpH acidity increased with the progression of incubation time. The coincorporation of poorly soluble base, magnesium carbonate, in the microspheres prolonged the appearance of detectable acidity for up to 3 weeks. Co-addition of an acetate buffer was able to control the μpH over a slightly acidic range (around pH 4.7) after two week incubation. Microspheres prepared from a lower polymer concentration exhibited a higher μpH, likely owing to reduced diffusional resistance to acidic degradation products. The stability of protein was enhanced by addition of MgCO 3, acetate buffer, or by reduced polymer concentration in the preparation, as evidenced by more soluble protein recovered after incubation. Hence, the μpH imaging technique developed can be employed in the future for optimization of formulation strategies for controlling μpH and stabilizing encapsulated proteins.
机译:聚(丙交酯-共-乙交酯)(PLGA)基质的水孔中的pH值,也称为微气候pH(μpH),通常不受控制,范围从高酸性到中性pH范围。使用共聚焦激光扫描显微镜定量评估蛋白质包封的PLGA微球内部的μpH分布。用于封装PLGA中的μpH的Lysosensor黄色/蓝色葡聚糖的荧光响应受封装蛋白的存在的影响。在中性pH下,荧光探针上吡啶基的非质子化形式是造成干扰的原因,这取决于蛋白质的类型和浓度。建立并验证了一种基于估算微球内部蛋白质浓度的干扰校正方法。校正影响后,在生理条件下,对4周内不同PLGA 50/50微球制剂的微球内部μpH分布动力学进行了评估。通常,μpH酸度随孵育时间的增加而增加。微球中难溶性碱碳酸镁的共掺入将可检测到的酸度的出现延长了长达3周的时间。孵育两周后,共添加乙酸盐缓冲液能够将μpH控制在弱酸性范围内(约pH 4.7)。由较低的聚合物浓度制备的微球表现出较高的μpH,这可能是由于对酸性降解产物的抗扩散性降低。通过添加MgCO 3,醋酸盐缓冲液或降低制剂中的聚合物浓度,可以增强蛋白质的稳定性,这可以通过孵育后回收的更多可溶性蛋白质来证明。因此,将来开发的μpH成像技术可用于优化控制μpH和稳定封装蛋白的制剂策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号