首页> 外文期刊>Molecular ecology >Statistical phylogeography
【24h】

Statistical phylogeography

机译:统计系统学

获取原文
获取原文并翻译 | 示例

摘要

While studies of phylogeography and speciation in the past have largely focused on the documentation or detection of significant patterns of population genetic structure, the emerging field of statistical phylogeography aims to infer the history and processes underlying that structure, and to provide objective, rather than ad hoc explanations. Methods for parameter estimation are now commonly used to make inferences about demographic past. Although these approaches are well developed statistically, they typically pay little attention to geographical history. In contrast, methods that seek to reconstruct phylogeographic history are able to consider many alternative geographical scenarios, but are primarily nonstatistical, making inferences about particular biological processes without explicit reference to stochastically derived expectations. We advocate the merging of these two traditions so that statistical phylogeographic methods can provide an accurate representation of the past, consider a diverse array of processes, and yet yield a statistical estimate of that history. We discuss various conceptual issues associated with statistical phylogeographic inferences, considering especially the stochasticity of population genetic processes and assessing the confidence of phylogeographic conclusions. To this end, we present some empirical examples that utilize a statistical phylogeographic approach, and then by contrasting results from a coalescent-based approach to those from Templeton's nested cladistic analysis (NCA), we illustrate the importance of assessing error. Because NCA does not assess error in its inferences about historical processes or contemporary gene flow, we performed a small-scale study using simulated data to examine how our conclusions might be affected by such unconsidered errors. NCA did not identify the processes used to simulate the data, confusing among deterministic processes and the stochastic sorting of gene lineages. There is as yet insufficent justification of NCA's ability to accurately infer or distinguish among alternative processes. We close with a discussion of some unresolved problems of current statistical phylogeographic methods to propose areas in need of future development. [References: 68]
机译:尽管过去的系统地理学和物种学研究主要集中在记录或检测种群遗传结构的重要模式,但新兴的统计系统地理学领域旨在推断该结构的历史和过程,并提供客观的信息,而不是仅仅提供广告。特别说明。现在,通常使用参数估计方法来推断人口统计的过去。尽管这些方法在统计学上得到了很好的发展,但它们通常很少关注地理历史。相反,寻求重建地理历史的方法能够考虑许多替代地理情况,但主要是非统计性的,从而推断特定的生物过程而无需明确参考随机衍生的期望。我们主张将这两种传统相结合,以便统计系统地理学方法可以提供对过去的准确表示,考虑各种过程,但仍可以对该历史进行统计估计。我们讨论与统计系统地理学推断有关的各种概念性问题,尤其要考虑种群遗传过程的随机性并评估系统地理学结论的可信度。为此,我们提出一些利用统计系统地理学方法的经验示例,然后通过将基于合并方法的结果与Templeton的嵌套式进化分析(NCA)的结果进行对比,说明了评估误差的重要性。由于NCA不会在关于历史过程或当代基因流的推论中评估错误,因此我们使用模拟数据进行了小规模研究,以检验我们的结论可能受到这种未考虑到的错误的影响。 NCA没有确定用于模拟数据的过程,这在确定性过程和基因谱系的随机排序之间造成了混乱。 NCA准确推断或区分其他流程的能力尚无充分根据。在结束时,我们讨论了当前统计系统学方法的一些未解决的问题,以提出需要未来发展的领域。 [参考:68]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号