首页> 外文期刊>Measurement Science & Technology >Work-function measurement by high-resolution scanning Kelvin nanoprobe
【24h】

Work-function measurement by high-resolution scanning Kelvin nanoprobe

机译:通过高分辨率扫描开尔文纳米探针进行功函数测量

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoscience promises to transform today's world in the same way that integrated semiconductor devices transformed the world of electronics and computation. In the post-genomic era, the greatest challenge is to make connections between the structures and functions of biomolecules at the nanometre-scale level in order to underpin the understanding of larger scale systems in the fields of human biology and physiology. To achieve this, instruments with new capabilities need to be researched and developed, with particular emphasis on new levels of sensitivity, precision and resolution for biomolecular analysis. This paper describes an instrument able to analyse structures that range from tenths of a nanometre (proteins, DNA) to micron-scale structures (living cells), which can be investigated non-destructively in their normal state and subsequently in chemical- or biochemical-modified conditions. The high-resolution scanning Kelvin nanoprobe (SKN) measures the work-function changes at molecular level, instigated by local charge reconfiguration due to translational motion of mobile charges, dipolar relaxation of bound charges, interfacial polarization and structural and conformational modifications. In addition to detecting surface electrical properties, the instrument offers, in parallel, the surface topographic image, with nanometre resolution. The instrument can also be used to investigate subtle work function/topography variations which occur in, for example, corrosion, contamination, adsorption and desorption of molecules, crystallographic studies, mechanical stress studies, surface photovoltaic studies, material science, biocompatibility studies, microelectronic characterization in semiconductor technology, oxide and thin films, surface processing and treatments, surfaces and interfaces characterization. This paper presents the design and development of the instrument, the basic principles of the method and the challenges involved to achieve nanometric resolution and sub-millivolt sensitivity, for both the topographic imaging of surface micromorphology and surface potential and work-function determination.
机译:纳米科学有望以与集成半导体器件改变电子和计算世界相同的方式改变当今世界。在后基因组时代,最大的挑战是在纳米级的水平上建立生物分子的结构和功能之间的联系,以加强对人类生物学和生理学领域中较大规模系统的理解。为此,需要研究和开发具有新功能的仪器,尤其要强调生物分子分析的灵敏度,精密度和分离度的新水平。本文介绍了一种能够分析从十分之一纳米(蛋白质,DNA)到微米级结构(活细胞)的结构的仪器,可以对其在正常状态下进行无损研究,然后在化学或生化分析中进行研究。修改条件。高分辨率扫描开尔文纳米探针(SKN)在分子水平上测量功函变化,这是由于移动电荷的平移运动,结合电荷的偶极弛豫,界面极化以及结构和构象修饰而引起的局部电荷重配置所引起的。除了检测表面电特性外,该仪器还并行提供纳米分辨率的表面形貌图像。该仪器还可用于研究细微的功函数/形貌变化,这些变化例如发生在分子的腐蚀,污染,吸附和解吸,晶体学研究,机械应力研究,表面光伏研究,材料科学,生物相容性研究,微电子表征在半导体技术,氧化物和薄膜,表面处理和处理,表面和界面表征中。本文介绍了该仪器的设计和开发,该方法的基本原理以及实现纳米分辨率和亚毫伏灵敏度的挑战,包括表面微观形态和表面电势的地形成像以及功函数的确定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号