【24h】

Ab initio dynamics of rapid fracture

机译:快速骨折的从头算动力学

获取原文
获取原文并翻译 | 示例
       

摘要

As our title implies, we consider materials failure at the fundamental level of atomic bond breaking and motion. Using computational molecular dynamics, scalable parallel computers and visualization, we are studying the failure of notched solids under tension using in excess of 10(8) atoms. In rapid brittle fracture, two of the most intriguing features are the roughening of a crack's surface with increasing speed and the terminal crack speed which is much less than the theoretical prediction. Our two-dimensional simulations show conclusively that a dynamic instability of the crack motion occurs as it approaches one-third of the surface sound speed. This discovery provides an explanation for the crack's surface roughening and limiting speed. For three-dimensional slabs, we find that an intrinsically ductile FCC crystal can experience brittle failure for certain crack orientations. A dynamic instability also occurs, but brittle failure is not maintained. The instability is immediately followed by a brittle-to-ductile transition and plasticity. Hyperelasticity, or the elasticity near failure, governs many of the failure processes observed in our simulations and its many roles are elucidated. [References: 25]
机译:顾名思义,我们在原子键断裂和运动的基本层面上考虑材料的破坏。使用计算分子动力学,可扩展的并行计算机和可视化,我们正在研究有缺口的固体在超过10(8)个原子的张力下的破坏。在快速脆性断裂中,两个最引人入胜的特征是裂纹表面随速度的增加而变粗糙,而最终裂纹的速度远小于理论预测值。我们的二维模拟最终表明,裂纹运动的动态不稳定性会随着表面声速的三分之一而发生。这一发现为裂纹的表面粗糙化和极限速度提供了解释。对于三维平板,我们发现本质上易延展的FCC晶体在某些裂纹取向下会发生脆性破坏。动态不稳定性也会发生,但不能保持脆性破坏。不稳定之后立即发生脆性到韧性的转变和可塑性。超弹性或接近破坏的弹性控制着我们模拟中观察到的许多破坏过程,并阐明了其许多作用。 [参考:25]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号