首页> 外文期刊>Molecular & cellular proteomics: MCP >Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease
【24h】

Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease

机译:PTM热点的蛋白质组范围的结构分析揭示了预测的影响生物功能和疾病的调控元件。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data -capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (similar to 6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable body of potential regulatory elements that impact hundreds of different biological processes important in eukaryotic biology and human health.
机译:翻译后修饰(PTM)通过调节蛋白质-蛋白质相互作用,酶活性和真核生物基因型向表型翻译所必需的蛋白质稳定性来调节蛋白质行为。目前,据报道,不到4%的真核PTM具有生物学功能-随着PTM检测率的提高,这一统计数字继续下降。以前,我们开发了SAPH-ire(PTM热点的结构分析)-一种PTM功能潜力优先排序的方法,已有效地用于揭示离散蛋白家族中新的PTM调控元件(Dewhurst等人,2015)。在这里,我们将SAPH-ire应用于包含实验性PTM和3D结构数据的真核蛋白家族集-捕获1,325个蛋白家族,其中50,839个独特的PTM位点组织为31,747个修饰的比对位置(MAPs),其中2010年(约6%)具有已知的生物学功能。在这里,我们表明,使用经过训练的具有识别具有生物学功能的MAP热点的人工神经网络模型(SAPH-ire NN),预测结果将远远超过使用单个热点特征(包括最近的邻居PTM聚类方法)的预测结果。我们发现PTM计数为5或更少的位置的预测最大增强,这代表了真核蛋白质组中所有MAP的98%和所有具有生物学功能的MAP的90%。对前1092个MAP热点的分析显示267个真正未知的功能(包含5443个不同的PTM)。其中,可以将165个热点映射到人的KEGG途径,以实现正常和/或疾病生理。尽管人类蛋白质家族成员中缺乏可观察到的PTM,但许多高级热点也被发现是与疾病相关的氨基酸替代病原体。总之,这些实验表明,可以通过神经网络模型非常有效地预测PTM的功能相关性,从而揭示出大量但可测试的潜在调控元件,这些元件会影响对真核生物和人类健康至关重要的数百种不同生物学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号