...
首页> 外文期刊>Mitochondrion >Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions
【24h】

Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions

机译:年龄相关的线粒体功能变化和研究年龄或成熟条件对哺乳动物卵母细胞氧化还原调节的新方法

获取原文
获取原文并翻译 | 示例

摘要

Mammalian oocytes are long-lived cells in the human body. They initiate meiosis already in the embryonic ovary, arrest meiotically for long periods in dictyate stage, and resume meiosis only after extensive growth and a surge of luteinizing hormone which mediates signaling events that overcome meiotic arrest. Few mitochondria are initially present in the primordial germ cells while there are mitogenesis and structural and functional differentiation and stage-specific formation of functionally diverse domains of mitochondria during oogenesis. Mitochondria are most prominent cell organelles in oocytes and their activities appear essential for normal spindle formation and chromosome segregation, and they are one of the most important maternal contributions to early embryogenesis. Dysfunctional mitochondria are discussed as major factor in predisposition to chromosomal nondisjunction during first and second meiotic division and mitotic errors in embryos, and in reduced quality and developmental potential of aged oocytes and embryos. Several lines of evidence suggest that damage by oxidative stress/reactive oxygen species in dependence of age, altered antioxidative defence and/or altered environment and bi-directional signaling between oocyte and the somatic cells in the follicle contribute to reduced quality of oocytes and blocked or aberrant development of embryos after fertilization. The review provides an overview of mitogenesis during oogenesis and some recent data on oxidative defence systems in mammalian oocytes, and on age-related changes as well as novel approaches to study redox regulation in mitochondria and ooplasm. The latter may provide new insights into age-, environment- and cryopreservation-induced stress and mitochondrial dysfunction in oocytes and embryos
机译:哺乳动物卵母细胞是人体内的长寿细胞。它们已经在胚胎卵巢中引发减数分裂,在独裁期长期减数分裂,仅在广泛生长和促成克服减数分裂停滞的信号转导事件的黄体生成素激增后才恢复减数分裂。最初的原始生殖细胞中很少存在线粒体,而在卵子发生过程中,线粒体发生了有丝分裂,结构和功能分化以及功能多样化域的阶段特异性形成。线粒体是卵母细胞中最突出的细胞器,它们的活性似乎对正常纺锤体形成和染色体分离至关重要,它们是母体对早期胚胎发生的最重要贡献之一。线粒体功能失调被认为是导致第一和第二次减数分裂的过程中染色体不分离的易感性以及胚胎中有丝分裂错误的主要因素,也是衰老的卵母细胞和胚胎的质量和发育潜力降低的主要因素。有几条证据表明,氧化应激/活性氧物种随年龄的增长,抗氧化防御能力的改变和/或环境的改变以及卵母细胞和卵泡中的体细胞之间的双向信号传导而造成的损害会降低卵母细胞的质量,并阻断或抑制卵母细胞的生长。受精后胚胎异常发育。该综述提供了卵子发生过程中有丝分裂的概述,以及有关哺乳动物卵母细胞氧化防御系统,年龄相关变化的一些最新数据以及研究线粒体和卵质中氧化还原调节的新方法。后者可能提供有关卵母细胞和胚胎中年龄,环境和冷冻保存引起的应激和线粒体功能障碍的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号