首页> 外文期刊>Mechatronics: The Science of Intelligent Machines >LMI-based distributed H-infinity control of the Thirty Meter Telescope's primary mirror
【24h】

LMI-based distributed H-infinity control of the Thirty Meter Telescope's primary mirror

机译:三十米望远镜主镜的基于LMI的分布式H无限控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates linear matrix inequality (LMI)-based distributed Ho,, control of the proposed Thirty Meter Telescope (TMT), in which 492 hexagonal segments will be employed to create a 30 m diameter circular optical aperture. The vast number of control parameters introduced by the segmented mirror design makes stabilizing and aligning the segments against disturbances a very challenging task to handle by the classical centralized control techniques. Although a decentralized design can simplify the control problem, the objective of bounding the relative displacements at the segment edges couples the neighboring segments at the control objective level. Also, since the segments are installed on a common support structure, any control action in one segment can excite the structure's natural modes and affect the neighboring segments due to their coupling at the structural level. In order to account for these two levels of couplings, a distributed control scheme is proposed. The main contribution of this work is the proof-of-concept demonstration of distributed control of the TMT's 492 mirror segments. First, a distributed model compatible with linear matrix inequalities (LMIs) is extracted via the finite element analysis (FEA) of the proposed TMT. Then, a distributed controller is designed by using the LMI approach. Closed-loop simulations of the 492-segment system with the synthesized controller are carried out, and compared against the performance of a Fourier-based distributed controller. The simulation results show that both distributed controllers can satisfy the stringent imaging performance requirements of the TMT. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文研究了基于线性矩阵不等式(LMI)的分布式Ho,对拟议的三十米望远镜(TMT)的控制,其中将使用492个六边形线段来创建直径为30 m的圆形光学孔径。分段镜设计所引入的大量控制参数使得针对干扰的稳定化和对准分段成为通过经典的集中控制技术来处理的非常具有挑战性的任务。尽管分散的设计可以简化控制问题,但是限制段边缘处的相对位移的目的是在控制目标级别将相邻段耦合。另外,由于将节段安装在公共支撑结构上,因此一个节段中的任何控制动作都会激发结构的自然模式,并由于相邻节段在结构层面上的耦合而影响相邻节段。为了考虑这两个级别的耦合,提出了一种分布式控制方案。这项工作的主要贡献是对TMT 492镜像段的分布式控制进行概念验证。首先,通过提出的TMT的有限元分析(FEA)提取与线性矩阵不等式(LMI)兼容的分布式模型。然后,使用LMI方法设计了分布式控制器。使用合成控制器对492段系统进行闭环仿真,并将其与基于傅立叶的分布式控制器的性能进行比较。仿真结果表明,两种分布式控制器都可以满足TMT严格的成像性能要求。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号