...
首页> 外文期刊>Mineralium deposita >The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions
【24h】

The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions

机译:花岗岩在火山成岩的大型硫化物成矿系统中的作用:岩浆-热液作用的评估

获取原文
获取原文并翻译 | 示例

摘要

Assessment of geological, geochemical and isotopic data indicates that a significant subgroup of volcanichosted massive sulphide (VHMS) deposits has a major or dominant magmatic–hydrothermal source of ore fluids and metals. This group, which is typically characterised by high Cu and Au grades, includes deposits such as those in the Neoarchean Doyon-Bousquet-LaRonde and CambrianMount Lyell districts. These deposits are distinguished by aluminous advanced argillic alteration assemblages or metamorphosed equivalents intimately associated with ore zones. In many of these deposits, δ~(34)Ssulphide is low, with a major population below -3‰; δ~(34)Ssulphate differs from coexisting seawater and Δ~(34)S_(sulphate–sulphide)~20–30‰. These characteristics are interpreted as the consequence of disproportionation of magmatic SO_2 as magmatic–hydrothermal fluids ascended and cooled and as a definitive evidence for a significant magmatic-hydrothermal contribution. Other characteristics that we consider diagnostic of significant magmatic–hydrothermal input into VHMS ore fluids include uniformly high (>3 times modern seawater values) salinities or very 18O-enriched (δ~(18)O>5‰) ore fluids. We do not consider other criteria [e.g. variable salinity, moderately high δ~(18)O_(fluid) (2–5‰),δ~(34)Ss_(ulphide) near 0‰, metal assemblages or a spatial association with porphyry Cu or other clearly magmatichydrothermal deposits] that have been used previously to advocate significant magmatic–hydrothermal contributions to be diagnostic as they can be produced by non-magmatic processes known to occur in VHMS mineral systems. However, in general, a small magmatic–hydrothermal contribution cannot be excluded in most VHMS systems considered. Conclusive data that imply minimal magmatic-hydrothermal contributions are only available in the Paleoarchean Panorama district where coeval seawater-dominated and magmatic–hydrothermal systems appear to have been physically separated. This district, which is characterised by chloritic and sericitic alteration assemblages and lacks aluminous advanced argillic alteration assemblages, is typical of many VHMS deposits around the world, suggesting that for “garden variety” VHMS deposits, a significant magmatic–hydrothermal contribution is not required. Other than deposits associated with advanced argillic alteration assemblages, the only deposit for which we ascribe a major magmatic–hydrothermal contribution is the Devonian Neves Corvo deposit. This deposit differs from other deposits in the Iberian Pyrite Belt and around the world in being extremely Sn-rich, with the Sn closely associated with Cu and in having formed from high 18O-rich fluids (δ~(18)Ofluid ~8.5‰).We consider these characteristics, particularly the last, as diagnostic of a significant magmatic hydrothermal contribution. Our analysis indicates that two subgroups of VHMS deposits have a major magmatic–hydrothermal contribution: Cu/Au-rich deposits with aluminous alteration assemblages and reduced, very Sn-rich deposits in which Sn was introduced in a high-temperature ore assemblage. Comparison with“normal” VHMS deposits suggests that these subgroups of VHMS deposits may form in specialised tectonic environments. The Cu/Au-rich deposits appear to form adjacent to magmatic arcs, an environment conducive to the generation of hydrous, oxidised melts by melting metasomatised mantle in the wedge above the subducting slab. This contrasts with the back-arc setting of “normal” VHMS deposits in which relatively dry granites (In this contribution, we use the term granite sensu latto) formed by decompression melting drive seawater-dominated hydrothermal circulation. The tectonic setting of highly Sn-rich VHMS deposits such as Neves Corvo is less clear; however, thick continental crust below the ore-hosting basin may be critical, as it is in other Sn deposits.
机译:对地质,地球化学和同位素数据的评估表明,火山成因的块状硫化物(VHMS)沉积物的一个重要的亚组具有主要的或占优势的岩浆热液源流体和金属。该组通常以高铜和金品位为特征,包括新奇多西恩道扬-博斯克特-拉朗德和坎布连山莱尔地区的矿床。这些矿床的特征是与矿区密切相关的高级铝质藻酸盐蚀变组合或变质等价物。在许多这些矿床中,δ〜(34)硫化物含量低,主要人口在-3‰以下。 δ〜(34)硫酸盐与共存海水不同,Δ〜(34)S_(硫酸盐-硫化物)〜20〜30‰。这些特征被解释为岩浆SO_2歧化的结果,是岩浆热液上升和冷却的结果,也是岩浆热液贡献显着的确凿证据。我们认为诊断VHMS矿浆中大量岩浆-热液输入的其他特征包括均匀高(> 3倍现代海水值)的盐度或非常富集18O(δ〜(18)O> 5‰)的矿浆。我们不考虑其他标准[例如盐度可变,δ〜(18)O_(流体)(2–5‰)中度较高,δ〜(34)Ss_(硫化物)在0‰附近,金属组合或与斑岩铜或其他明显的岩浆热液矿床的空间联系]以前已被用来提倡对岩浆-热液做出重大贡献以进行诊断,因为它们可以通过已知在VHMS矿物系统中发生的非岩浆过程产生。但是,总的来说,在大多数所考虑的VHMS系统中不能排除岩浆-水热的小贡献。暗示岩浆热液贡献最小的结论性数据仅在古太平洋全景地区可用,那里古代的海水占主导地位的岩浆热液系统似乎在物理上是分开的。该地区的特点是有氯酸盐和浆液蚀变组合,并且缺乏高级的铝质铝酸盐蚀变组合,是世界上许多VHMS矿床的典型特征,这表明对于“花园式” VHMS矿床,不需要大量的岩浆-热液作用。除了与晚期泥质蚀变组合有关的矿床以外,我们认为其主要的岩浆-热液作用是唯一的泥盆纪内夫斯科尔沃矿床。该矿床与伊比利亚黄铁矿带及世界其他地区的矿床不同,其锡含量极高,锡与铜密切相关,并由富含18O的高流体形成(δ〜(18)流体〜8.5‰)。我们认为这些特征,尤其是最后一个特征,是对岩浆热液贡献显着的诊断。我们的分析表明,VHMS矿床的两个子类具有主要的岩浆-水热作用:富含铝/蚀变组合的富Cu / Au矿床,以及在高温矿石组合中引入了Sn的还原性极富Sn矿床。与“正常” VHMS矿床的比较表明,VHMS矿床的这些子群可能在特殊的构造环境中形成。富含Cu / Au的矿床似乎形成于岩浆弧附近,该环境有利于通过俯冲板块上方楔块中交化后的地幔熔融而产生含水的氧化熔体。这与“常规” VHMS矿床的弧后环境形成对比,在该矿床中,通过减压融化形成的相对干燥的花岗岩(在此贡献中,我们使用术语“花岗岩花岗岩”)驱动了以海水为主的热液循环。富含锡的VHMS矿床(如内维斯·科尔沃)的构造背景尚不清楚;然而,就像在其他锡矿中一样,在寄主盆地下方的厚大陆壳可能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号