首页> 外文OA文献 >Geology, host rock succession, and hydrothermal alteration of the Waterloo volcanic-hosted massive sulphide deposit (Northern Queensland, Australia)
【2h】

Geology, host rock succession, and hydrothermal alteration of the Waterloo volcanic-hosted massive sulphide deposit (Northern Queensland, Australia)

机译:滑铁卢火山携带的块状硫化物矿床的地质,宿主岩石演替和热液蚀变(澳大利亚北昆士兰州)

摘要

The Waterloo volcanic-hosted massive sulphide (VHMS) deposit is located in the ChartersudTowers Region in northern Queensland, Australia. The deposit forms part of the CambroOrdovicianudSeventy Mile Range Group that represents a major belt of E-W striking and subverticaluddipping volcanic-sedimentary rocks. The volcanic host rocks and the base metal mineralisationudof the Waterloo deposit are not exposed in surface outcrops because of a thickudcover by Pliocene fluvial sedimentary rocks. Exploration diamond drilling (total -10 km ofudcore) led to the delineation of a relatively small high-grade base metal resource of 243,500udtonnes ore grading 3.8 % Cu, 13.8 % Zn, 3.0 % Pb, 74 glt Ag, and 1.2 glt Au. The mineralisationudcomprises several small semiconnected stratiform, blanket-like, pyrite-chalcopyritesphalerite-udgalena massive sulphide lenses.udThe structural style of the Early Ordovician Waterloo sequence has been constrained usingudmacroscopic structural techniques. The massive sulphides at Waterloo are interpreted to beudsyn-volcanic in origin because they have been overprinted by the same generations of tectonicudstructures as the host stratigraphy. The Waterloo sequence was tilted into a subvertical positionudduring north-south compression that is possibly Mid- to Late Ordovician in age. Thisudregional folding event also resulted in the development of an axial plane cleavage that is particularlyudwell developed in a high strain zone surrounding the massive sulphides. The spatialudrelationship between the folded bedding plane and the axial plane cleavage as well as the consistentudsouth facing of the bedding of volcaniclastic sediments indicate that the deposit is locatedudat the southern limb of a major east-west trending antiform. This antiform has a shallowudplunge to the west. The Waterloo sequence was affected by two faulting events that areudyounger than the regional folding. Early steeply dipping ENE striking faults interpreted to beudSilurian or Devonian were accompanied by significant dip-slip normal movement, whereasudyounger strike-slip faults have no affect to the geometry of the Waterloo sequence.udBased on the improved understanding of the structural style of the Waterloo sequence, theudvolcanic facies architecture of the host sequence was investigated to unravel the temporal andudspatial relationships between volcanism and massive sulphide formation. The massive sulphidesudformed in a below storm wave base depositional enviromnent on top of a nonexplosive,udnear-vent, andesite-dominated facies association containing coherent volcanic unitsudand related juvenile volcaniclastic rocks. The massive sulphide lenses are overlain, and partiallyudhosted in, a coarse quartz-feldspar crystal-rich sandstone and breccia facies. These rocksudare interpreted to be mass flows that record contemporaneous probably explosive dacitic toudrhyolitic volcanism outside the Waterloo area. The still wet and unconsolidated coarse sedimentudin the immediate hanging wall of the massive sulphides was intruded by a feldspar porphyriticuddacite cryptodome that was partly emergent at the ancient seafloor. The emplacementudof the cryptodome indicates that the magmatic source feeding the volcanism within the Waterlooudarea shifted towards an acidic composition at the time of massive sulphide formation.udDacite cryptodome volcanism at Waterloo was followed by the waning of the hydrothermaludactivities. The subsequent period of relatively quite sedimentation was occasionally interruptedudby the emplacement of syn-sedimentary basaltic to andesitic sills and was followed byudthe mass flow deposition of a coarse feldspar-quartz sandstone and breccia facies. Finallyudthere was a period of intense non-explosive, near-vent basalt to andesite-dominated volcanism.udPetrochemical investigations demonstrated that the coherent volcanic rocks of the Waterlooudsequence belong to a subalkaline volcanic suite. The basalt, andesite, and dacite of the Waterlooudsequence are cogenetic. The petrographic and petrochemical characteristics of the reworkedudvolcaniclastic facies suggest that the material was derived from a petrogeneticallyudsimilar volcanic source of dacitic to rhyolitic composition. The geochemical signatures of theudmost primitive volcanic rocks from the Waterloo sequence are similar to modern subductionrelatedudvolcanics, such as back-arc basin basalts forming during the early stages of back-arcudbasin evolution. Based on these findings and the results of previous regional studies, it is suggestedudthat volcanism in the Waterloo area occurred in a bac - arc basin that developed onudthinned Precambrian continental lithosphere flanking a continental margin volcanic arc.udMineralogical investigations on the volcanic rocks hosting the massive sulphides revealed thatudtwo types of alteration can be distinguished. Least altered rocks were affected by weak regionaludalteration that was caused by the combined effects of devitrification, hydration, burialuddiagenesis, seawater interaction, regional metamorphism of the lower greenschist facies, anduddefOlmation. In contrast, volcanic rocks located in the footwall and the immediate hangingudwall of the massive sulphides were subject to a combination of hydrothermal and regionaludalteration.udThe spatial distribution of alteration mineral associations as well as the mineralogical andudgeochemical attributes of the hydrothermal altered rocks constrain the environment of hydrothermaludalteration. The massive sulphide lenses at Waterloo are underlain by an extensiveudfootwall alteration halo that is typified by a semiconformable zonation defined by an innerudzone of silicic-altered volcanics (pyrite-quartz-muscovite) that laterally passes into a zone ofudphyllic alteration (pyrite-muscovite-chlorite-quartz, pyrite-paragonite-muscovite-chloriteintermediateudNaIK mica-quartz, and pyrite-muscovite-albite-chlorite-paragonite-intermediateudNaIK mica-quartz-calcite) and a zone consisting of propylitic-altered volcanics (albitechlorite-udepidote-muscovite-paragonite-quartz-calcite-pyrite and albite-chlorite-epidote-quartzcalcite).udIt is demonstrated that the development of the zonation of the alteration halo can beuddirectly linked to the nature and evolution of the fluids interacting with the volcanic rocks inudthe different parts of the hydrothermal alteration halo. Hydrothermal alteration in the upflowudzones of the mineralising fluids resulted in the formation of large amounts of muscovite onudthe expense of primary rock-forming silicates by the combined effects of potassium and hydrogenudmetasomatism. This type of alteration was principally linked to the acidity of the mineralisingudhydrothermal fluids. The alteration in the upflow zones also involved a sulphidisationudof the rocks due to the reaction of ferrous iron contained in rock-forming silicates and theudvolcanic glass matrix with HzS supplied by the hydrothermal fluids. Silicification was pronouncedudin the upflow zones because the mineralising fluids cooled by moving down a temperatureudgradient. Outward percolation of the hydrothermal fluids into zones surrounding theudthermal upflow was accompanied by a rapid neutralisation of the strong acids and, therefore,udan increasing reactivity of CO2 with respect to hydrogen metasomatism. The percolation ofudseawater into the zones surrounding the high temperature upflow zones was intrinsically involvedudin the development of the alteration zonation. Heating of seawater, by moving up audtemperature gradient, resulted in a pronounced sodium metasomatism in the outer parts of theudalteration halo that caused the formation of sodium silicates (albite, intermediate NaIK mica,udand paragonite) at the expense of primary rock-forming silicates such as feldspars and earlierudformed products of hydrothermal alteration, such as muscovite. In contrast to the footwalludalteration halo, alteration of the volcanic facies overlying the ore horizon is limited in extentudand rapidly fades in intensity with increasing distance from the sulphides. The zonation of theudhanging wall alteration is defined by an inner zone of phyllic alteration (pyrite-muscovitequartz,udpyrite-muscovite-paragonite-intermediate NaIK mica-chlorite-quartz, muscovitechlorite-udquartz, and muscovite-paragonite-intermediate NaIK mica-chlorite-quartz) and anudouter zone comprising propylitic-altered volcanics (albite-muscovite-chlorite-paragoniteintermediateudNaIK mica-quartz-calcite and albite-muscovite-chlorite-epidote-quartz-calcite).udPhyllic alteration in the immediate hanging wall of the massive sulphides can be accountedudfor by the ongoing intense alteration following the burial of the ores by the mass flow derivedudcoarse quartz-feldspar sandstone and breccia facies and the emplacement of the dacitic cryptodome,udwhereas the outer zone of propylitic alteration records the waning of the hydrothermaludactivities where alteration occurred at successively decreasing temperatures in a moreudoxidising environment.udBased on the results of this study it is suggested that the genetic relationship between volcanismudand massive sulphide formation can be constrained by integrating volcanological studiesudon the host rock sequence with detailed mineralogical and geochemical investigations of theudhydrothermally altered rocks. The volcanological investigations demonstrate that the mineralisationudevent occurred in close temporal and spatial relationship to felsic volcanism culminatingudin the emplacement of a dacite cryptodome in the immediate hanging wall to the massiveudsulphides. The findings of the alteration halo study are consistent with this observationudbecause the mantle-derived volcanism in the Waterloo area may not only have provided theudheat to drive the hydrothermal system, but may also have acted as a source of chemical components,udsuch as volatile species that controlled the acidity of the mineralising hydrothermaludfluids.
机译:滑铁卢火山携带的块状硫化物(VHMS)矿床位于澳大利亚昆士兰州北部的Charters udTowers地区。该矿床是CambroOrdovician udSeventy Mile Range组的一部分,该组代表了E-W撞击和亚垂直 udpipping火山沉积岩的主要带。由于上新世河流相沉积岩具有厚的覆盖层,火山滑行岩和滑铁卢矿床的贱金属矿化 ud未暴露在地表露头。勘探金刚石钻探(总共-10 km udcore)导致划定了一个相对较小的高档贱金属资源,即243,500 udtonnes矿石,其中品位为3.8%,锌为13.8%,铅为3.0%,银含量为74 glt和1.2金矿化作用包括几个小的半连接的层状,毯状,黄铁矿-黄铜矿闪锌矿- udgalena块状硫化物晶状体。 ud早期奥陶纪滑铁卢层序的结构样式已通过宏观显微镜技术加以限制。滑铁卢的块状硫化物被解释为 udsyn-火山岩,因为它们被与宿主地层相同的构造 udstructures世代覆盖。在南北向压缩期间,滑铁卢层序倾斜到一个亚垂直位置,该年龄可能是奥陶纪中晚期。该区域折叠事件还导致轴向平面裂解的发展,特别是在围绕大块硫化物的高应变区中发展得很好。折叠的层理面与轴向面劈裂之间的空间不相关性以及火山碎屑沉积物的层理一致的 uduth面表示该沉积物位于主要的东西向趋势地貌的南端。这种反型在西面有一个浅水跳水。滑铁卢序列受两个断层事件的影响,这些断层事件比区域褶皱年轻。早期被认为是 udSilurian或泥盆纪的陡倾ENE断裂带伴有明显的滑移法向运动,而 udyoung的走滑断层对滑铁卢层序的几何形状没有影响。 ud基于对结构的更好理解在滑铁卢层序的样式上,研究了宿主层序的火山相结构,以阐明火山作用与大量硫化物形成之间的时间和空间关系。块状硫化物在一个风暴波以下的沉积环境中形成,位于一个非爆炸性,近端,安山岩为主的相缔合之上,其中包含相干的火山单元 udand相关的幼年火山碎屑岩。块状硫化物晶状体覆盖在部分石英岩-长石-富含水晶的砂岩和角砾岩相中,并且部分隐藏在其中。这些岩石敢于解释为是质量流,记录了滑铁卢地区以外同时期可能爆发的大晶质至渗流质火山活动。块状硫化物的直接悬挂壁上仍湿润且未固结的粗大沉积物被长石斑岩 uddacite隐岩侵入,该隐岩部分出现在古代海底。隐球体的位置 ud表明,在滑铁卢形成大量硫化物时,向滑铁卢大学提供火山活动的岩浆源向酸性成分转移。 ud滑铁卢的达克特隐球体火山作用之后,热液活动性减弱。后来,相对沉积的阶段偶尔被同沉积玄武岩安山岩台地的位置所打断,随后是粗长石-石英砂岩和角砾岩相的质量流沉积。终于有一段以安山岩为主的火山岩发生强烈的非爆炸性,近乎通气的玄武岩的时期。 ud石油化学研究表明,滑铁卢火山岩的相干火山岩属于亚碱性火山岩组合。滑铁卢 udsequence的玄武岩,安山岩和榴辉岩是共生的。改造后的或火山碎屑岩相的岩石学和岩石化学特征表明,该物质是从成岩的类似的火山岩来源(从胶状到流纹岩组成)衍生的。滑铁卢层序中最原始的火山岩的地球化学特征类似于现代俯冲相关的火山岩,例如在弧后盆地发育初期形成的弧后盆地玄武岩。基于这些发现和以前的区域研究结果因此,建议 ud说滑铁卢地区的火山活动发生在一个弧形盆地中,该弧形盆地位于 udinthum的前寒武纪大陆岩石圈两侧,大陆边缘的火山弧两侧。 ud对含有大量硫化物的火山岩的矿物学研究表明,可以区分。最少蚀变的岩石受失透,水合作用,埋藏/成岩作用,海水相互作用,下部绿片岩相的区域变质作用和 uddefation的综合作用所引起的弱区域 uuttalation影响。相比之下,位于大块硫化物的底壁和直接悬挂的 udwall上的火山岩受到热液作用和区域 daudation的组合。 ud蚀变矿物缔合的空间分布以及该矿物的矿物学和/化学化学属性热液蚀变岩石限制了热液化的环境。滑铁卢的大型硫化物晶状体被广泛的脚下墙蚀变晕晕所掩盖,晕轮的特征是半整合带,由硅质改变的火山岩(黄铁矿-石英-白云母)的内部 udzone定义,该区域从侧面进入 ududic蚀变区(黄铁矿-白云母-亚氯酸盐-石英,黄铁矿-方解石-白云母-亚氯酸盐中间体 udNaIK云母-石英和黄铁矿-白云母-重晶石-亚氯酸盐-方解石中间体 udNaIK云母-石英-方解石)和一个由丙炔改变的区域组成火山作用(方铁矿-绿榴石-白云母-方解石-石英-方解石-黄铁矿和钠长石-绿石-绿宝石-方解石-石英方解石)。 ud表明,晕圈变化带的发展可以与自然和演化直接联系在一起。在热液蚀变晕的不同部分中与火山岩相互作用的流体的数量。矿化流体上流 udzone中的热液蚀变导致大量白云母的形成,这是由于钾和氢的联合作用成岩作用所致。这种类型的变化主要与矿化超水热流体的酸度有关。由于形成岩的硅酸盐和火山岩玻璃基体中所含的亚铁与水热流体提供的HzS反应,上流区的变化还涉及岩石的硫化。上流区硅化作用明显,因为矿化液通过温度/梯度下降而冷却。水热流体向外渗入到高温上升流周围的区域,伴随着强酸的快速中和,因此,二氧化碳相对于氢的交代作用增加了反应活性。海水渗入高温上流区周围的区域内在本质上参与了渗碳变化区域的发展。通过升高温度梯度使海水变热,导致其在卤化环的外部显着的钠交代作用,从而导致硅酸钠的形成(无定形,中间NaIK云母,ud和方石),但以初级反应为代价岩石形成的硅酸盐(如长石)和水热蚀变的较早/变形的产物(如白云母)。与下盘/火山岩晕相比,覆盖矿层的火山岩相的变化程度受到限制,并且随着距硫化物距离的增加,强度迅速减弱。悬墙蚀变的分区由内部蚀变带定义(黄铁矿-白云母石英,黄铁矿-白云母-白云母-中间NaIK云母-亚氯酸盐-石英,白云母-亚氯酸盐- udquartz和白云母-白云母-中间NaIK云母-亚氯酸盐-石英)和一个由伪丙酸蚀变的火山形成的伪区域(阿尔比特-白云母-亚氯酸盐-方解石中间体 udNaIK云母-石英-方解石和钠长石-白云母-亚氯酸盐-埃皮针-石英-方解石)。块状硫化物的悬挂壁可通过源于岩浆的石英岩-长石砂岩和角砾岩相的质量流以及大隐岩体的埋入而埋藏矿石后进行的剧烈变化来解释。, u n n n n n n ///////////////////////////////////////////////////////////////////////////////////////////////////////////////。可以通过将火山岩研究对宿主岩层序的研究与对 udhydrothermally蚀变的岩石的详细矿物学和地球化学研究相结合,来限制大量硫化物的形成。火山学调查表明,成矿作用/事件发生在与长石火山活动密切的时间和空间关系上,最终在大块 udsulphides的直接悬挂壁中放置了一个达克特隐球体。改变晕圈研究的结果与此观察结果相符。因为滑铁卢地区的地幔衍生的火山活动可能不仅为驱动热液系统提供了热量,而且还可能是化学成分的来源,诸如控制矿化热液 udfluids的酸度的挥发性物质。

著录项

  • 作者

    Monecke T;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号