...
首页> 外文期刊>Microsystem technologies >Characterization of the thermodynamic cycle of a MEMS-based external combustion resonant engine
【24h】

Characterization of the thermodynamic cycle of a MEMS-based external combustion resonant engine

机译:基于MEMS的外部共振发动机的热力学循环特性

获取原文
获取原文并翻译 | 示例
           

摘要

The thermodynamic cycle of a resonant, MEMS-based, micro heat engine is characterized. The micro heat engine is an external combustion engine made of a cavity encapsulated between two membranes. The cavity is filled with saturated liquid-vapor mixture working fluid. Heat is added to and rejected from the engine at a frequency corresponding to the resonant frequency of the engine. Both pressure-volume and temperature-entropy diagrams are used to investigate the thermodynamic cycle of the resonant micro heat engine. The results show that the working cycle is nearly rectangular in shape and consists of two constant temperature processes and two constant volume processes. We hypothesize that major sources of irreversibility in the engine are heat transfer over finite temperature differences during heat addition and rejection, heat transfer into and out of engine thermal mass, viscous losses due to liquid working fluid motion, and heat escape from the engine to the surroundings. The maximum pressure and volume changes measured inside the engine cavity are 45 Pa and 0.55 mm~3, respectively. The results show that for a heat addition of 1 mJ, the engine operates over a very small temperature difference. The small operating temperature difference is mostly attributable to the large thermal storage of the engine structure, the membranes and the wicks. The measured second law efficiency of the micro heat engine is 16%.
机译:表征了基于MEMS的谐振微热引擎的热力学循环。微型热机是由封装在两个膜之间的空腔制成的内燃机。空腔中充满了饱和的液体-蒸汽混合物工作流体。热量以对应于发动机共振频率的频率被添加到发动机并从发动机排出。压力-体积和温度-熵图均用于研究谐振微型热机的热力学循环。结果表明,工作周期几乎为矩形,由两个恒温过程和两个恒定体积过程组成。我们假设,发动机不可逆性的主要根源是在热量增加和排出过程中,通过有限的温差传热,进出发动机热质量的传热,由于液体工作流体运动而产生的粘性损失以及从发动机到发动机的热量散逸。环境。发动机腔体内测得的最大压力和体积变化分别为45 Pa和0.55 mm〜3。结果表明,对于1 mJ的热量,发动机在非常小的温差下运行。较小的工作温度差主要归因于发动机结构,膜片和油芯的大量蓄热。测得的微型热机的第二定律效率为16%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号