首页> 外文学位 >Characterization and modeling of a MEMS-based resonant micro heat engine.
【24h】

Characterization and modeling of a MEMS-based resonant micro heat engine.

机译:基于MEMS的共振微型热机的表征和建模。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this dissertation is investigating the dynamic and the thermal behavior of a MEMS-based resonant micro heat engine. The thermodynamic cycle of the engine is also investigated. To completely characterize the operation of the engine a new experimental setup is built and used. A lumped parameter model of the engine is developed.;The model is validated against measured data. The velocity transfer function shows a broad plateau with a maximum value of 2.5mm/s/W. No resonant peak is observed over the frequency range 0.1--1000Hz. To reduce the resonant frequency of the engine a small mass is placed on top of the engine. The resonant frequency of the engine is reduced to 100Hz. The amplitude of the velocity transfer function reaches a maximum value of 10mm/s/W at resonant frequency. Thus, at resonance the amplitude of velocity transfer function is increased by a factor of 4. Experiments show that the amplitude of velocity transfer function increases by a factor of 1.5--8.5 when added mass is thermally isolated from the engine. Pulse durations less than 10% of the total engine cycle period are desirable.;Both resonant and off-resonant operations of the engine are investigated. The results show that resonant operation is valuable. For a fixed amount of energy delivered to the engine, as the resonant operation is approached the cycle opens up and more mechanical work is observed. However, for an off-resonant operation pressure and volume become coupled and less mechanical work is observed.;The thermodynamic cycle of the engine has been acquired experimentally. Vapor pressure, vapor volume, vapor temperature, and vapor entropy changes inside the cavity of the engine are determined. The maximum measured pressure and volume changes are 45Pa and 0.55mm3, respectively. The data show that the engine operates at vapor temperature gradient less than 1°C. Albeit the temperature gradient is low, the measured second law efficiency of the micro heat engine is about 16%. Major sources of irreversibility in the engine are heat transfer over finite temperature differences during heat addition and rejection, heat transfer into and out of engine thermal mass and viscous losses due to liquid working fluid motion.
机译:本文的重点是研究基于MEMS的谐振微热机的动态和热行为。还研究了发动机的热力学循环。为了完全表征发动机的运行,建立并使用了新的实验装置。开发了发动机的集总参数模型。;该模型针对实测数据进行了验证。速度传递函数显示出最大值为2.5mm / s / W的宽平台。在0.1--1000Hz的频率范围内未观察到共振峰。为了降低发动机的共振频率,在发动机顶部放置一小块物体。发动机的共振频率降低到100Hz。在共振频率下,速度传递函数的振幅达到最大值10mm / s / W。因此,在共振时,速度传递函数的幅度增加了4倍。实验表明,当附加质量与发动机热隔离时,速度传递函数的幅度增加了1.5--8.5倍。小于总发动机循环周期10%的脉冲持续时间是理想的。研究了发动机的共振和非共振操作。结果表明,谐振操作是有价值的。对于传递到发动机的固定量的能量,随着接近共振操作,循环打开,并观察到更多的机械功。但是,对于非共振运行,压力和体积会耦合,并且观察到的机械功较小。;发动机的热力学循环已通过实验获得。确定发动机腔体内的蒸气压,蒸气量,蒸气温度和蒸气熵的变化。测得的最大压力和体积变化分别为45Pa和0.55mm3。数据显示,发动机在低于1°C的蒸汽温度梯度下运行。尽管温度梯度低,但测得的微型热机的第二定律效率约为16%。发动机不可逆性的主要来源是在热量添加和排出过程中超过有限温度差的热量传递,热量流入和流出发动机的热质量以及由于液体工作流体的运动而产生的粘性损失。

著录项

  • 作者

    Bardaweel, Hamzeh Khalid.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号